• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 17
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 110
  • 110
  • 110
  • 24
  • 22
  • 18
  • 16
  • 14
  • 14
  • 14
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Crystal structure and hydroxyapatite binding of porcine osteocalcin /

Hoang, Quyen Quoc. Yang, Daniel. January 2003 (has links)
Thesis (Ph.D.)--McMaster University, 2003. / Advisor: Daniel Yang. Includes bibliographical references (leaves 88-97). Also available via World Wide Web.
42

Chondroplastic conversion and calcification of advanced atherosclerotic lesions : the impact of bone regulatory proteins and diet /

Bennett, Brian J. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 112-139).
43

Creation of a hybridization probe specific to chick bone morphogenetic protein-6 : /

Freckelton, Stephanya. January 2005 (has links)
Thesis (M.S.)--San Jose State University, 2005. / Includes abstract. Includes bibliographical references. ProQuest ; Subscription required for access to full text. Also available via the World Wide Web ;
44

O efeito da BMP-2 sobre as propriedades osteocondutoras do beta-tricálcio fosfato em defeitos de calvária de ratos

Luvizuto, Eloá Rodrigues [UNESP] 27 May 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:31:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-05-27Bitstream added on 2014-06-13T19:41:06Z : No. of bitstreams: 1 luvizuto_er_dr_araca.pdf: 1092204 bytes, checksum: 1e6344b6cf18e7d173b8b90d3efcb6bc (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A neoformação óssea em defeitos críticos em calvária de ratos depende fortemente das propriedades osteocondutoras dos enxertos e biomateriais. Ainda é controverso se os biomateriais podem substituir os enxertos de osso autógeno e se a suplementação dos biomateriais com Proteínas Ósseas Morfogenéticas (BMPs) é necessária para melhorar a formação óssea. Examinamos defeitos críticos em calvária de ratos (5 mm de diâmetro) tratados com β-tricálcio fosfato (TCP; Cerasorb ® M), gel de ácido polilático e poliglicólico (PLA/PGA; Fisiograft®) e cimento de fosfato de cálcio (CPC; Norian® CRS®), isoladamente ou na presença de 5μg de BMP-2 após 45 dias. Defeitos tratados com enxerto de osso autógeno particulado e defeitos não tratados serviram como controle. A formação óssea foi avaliada com base na análise de μCT, análise histomorfométrica e análise de fluorescência. Nós relatamos que o TCP apoia a formação óssea de forma mais eficiente do que o enxerto de osso autógeno particulado. A formação óssea na presença de TCP sozinho atingiu um nível máximo de neoformação óssea, enquanto que a suplementação de BMP-2 falhou em melhorar a neoformação óssea. Em contrapartida, não houve diferença significativa na formação óssea quando o PLA / PGA e o CPC foram comparados ao enxerto autógeno. Além disso, a presença de BMP-2 não alterou substancialmente as propriedades osteocondutoras de PLA/PGA ou de CPC. Conclui-se que as propriedades osteocondutoras do TCP são superiores aos dos enxertos autógenos e que o TCP não exige suplementação de BMP-2. Nossos resultados também mostram que a diminuição da capacidade osteocondutora do PLA/PGA e do CPC não podem ser superadas pela suplementação de BMP-2 em defeitos de calvária de ratos / Bone formation in critical-sized calvaria defects is strongly dependent on the osteoconductive properties of grafts. It remains a matter of controversy whether biomaterials can replace autografts and whether the supplementation of biomaterials with Bone Morphogenetic Proteins (BMPs) is necessary to enhance bone formation. We examined rat calvaria critical-sized defects (5mm diameter) treated with β-tricalcium phosphate (TCP; Cerasorb® M), polylactic and polyglycolic acid gel (PLA/PGA; Fisiograft®) and calcium phosphate cement (CPC; Norian® CRS®), either alone or in the presence of 5μg of BMP-2 after 45 days. Autografts and untreated defects served as controls. Bone formation was evaluated based on μCT analysis, histomorphometric analysis and fluorescence analysis. We report that TCP supported bone formation more efficiently than did autografts. Bone formation in the presence of TCP alone reached a maximal level, as BMP-2 supplementation failed to enhance bone formation. By contrast, no significant difference in bone formation was observed when PLA/PGA and CPC were compared to autografts. Moreover, the presence of BMP-2 did not substantially change the osteoconductive properties of PLA/PGA or CPC. We conclude that the osteoconductive properties of TCP are superior to those of autografts and that TCP does not require BMP-2 supplementation. Our findings also show that the decreased osteoconductive properties of PLA/PGA and CPC cannot be overcome by BMP-2 supplementation in rat calvaria defects
45

Increased CKIP-1 suppresses Smad-dependent BMP signaling to inhibit bone formation during aging

Liu, Jin 19 August 2016 (has links)
Emerging evidence indicates that the dysregulation of protein ubiquitination plays a crucial role in aging-associated diseases. Smad-dependent canonical BMP signaling pathway is indispensable for osteoblastic bone formation, which could be disrupted by the ubiquitination and subsequent proteasomal degradation of Smad1/5, the key molecules for BMP signaling transduction. However, whether the dysregulation of Smad1/5 ubiquitination and disrupted BMP signaling pathway are responsible for the age-related bone formation reduction is still underexplored. Casein kinase-2 interacting protein-1 (CKIP-1), also known as Pleckstrin homology domain-containing family O member 1 (PLEKHO1), is a previously identified ubiquitination-related molecule that could specifically target the linker region between the WW domains of Smurf1 to promote the ubiquitination of Smad1/5. Here, we found an age-related increase in the expression of CKIP-1 in bone specimens from either fractured patients or aging rodents, which was associated with the age-related reduction in Smad-dependent BMP signaling and bone formation. By genetic approach, we demonstrated that loss of Ckip-1 in osteoblasts could promote the Smad-dependent BMP signaling and alleviated the age-related bone formation reduction. In addition, osteoblast-specific Smad1 overexpression had beneficial effect on bone formation during aging, which could be counteracted after overexpressing Ckip-1 within osteoblasts. By pharmacological approach, we showed that osteoblast-targeted CKIP-1 siRNA treatment could enhance Smad-dependent BMP signaling and promote bone formation in aging rodents. Taken together, it suggests that the increased CKIP-1 could suppress Smad-dependent BMP signaling to inhibit bone formation during aging, indicating the translational potential of targeting CKIP-1 in osteoblast as a novel bone anabolic strategy for reversing established osteoporosis during aging.
46

Biocompatibility of orthopaedic implants on bone forming cells

Kapanen, A. (Anita) 22 February 2002 (has links)
Abstract Reindeer antler was studied for its possible use as a bone implant material. A molecular biological study showed that antler contains a growth factor promoting bone formation. Ectopic bone formation assay showed that antler is not an equally effective inducer as allogenic material. Ectopic bone formation assay was optimised for biocompatibility studies of orthopaedic NiTi implants. Ti-6Al-4V and stainless steel were used as reference materials. The assay showed differences in bone mineral densities, with superior qualities in NiTi. The rate of endochondral ossification varied between the implants, NiTi ossicles had larger cartilage and bone areas than ossicles of the two other materials. The cytocompatibility of NiTi was studied with three different methods. Cell viability, cell adhesion and TGF-β1 concentration were assessed in ROS-17/2.8 cell cultures. Cells grown on NiTi had better viability than cells grown on pure nickel or stainless steel. Cell attachment on the materials was studied with paxillin staining of focal contacts. The number of focal contacts was clearly higher in cells grown on NiTi than in cells grown on pure titanium, pure nickel or stainless steel. TGF-β1 concentration was measured with ELISA. The results showed that there was only some minor variation between NiTi, pure titanium and stainless steel. Nickel showed a lower TGF-β1 concentration. Taken together, these results suggest that NiTi is well tolerated by ROS-17/2.8 cells. The cytocompatibility of stainless steel is not so good as that of NiTi. The same tests were used to study the effects of the surface roughness of the implant on cytocompatibility. Three different surface roughness grades were compared in cell cultures on NiTi and titanium alloy discs. Titanium alloy was subjected to two different heat treatments, to compare the effects of the treatments on cytocompatibility. The studies showed that NiTi had a lesser impact on cell viability and attachment than titanium alloy. Further, rough NiTi was found to be a better tolerated surface than the others. In this study, heat treatment of titanium alloy at +850° C did not interfere with cell viability or attachment, as did the +1050° C treatment of the alloy. On the contrary, TGF-β1 concentrations decreased on the +850° C treated alloy and were approximately same on the +1050° C treated alloy and on NiTi.
47

Comparative study of heterotopic bone induction using porcine bone morphogenetic proteins delivered into the rodent subcutaneous space with allogeneic and xenogeneic collagen carriers

Mohangi, Govindrau Udaibhan 12 June 2009 (has links)
Please read the abstract in die section front of this document. / Dissertation (MChD)--University of Pretoria, 2009. / Oral Pathology and Oral Biology / unrestricted
48

The role of mechanical loading, bone morphogenetic proteins and erroneous differentiation of tendon-derived stem cells in the pathogenesis of patellar tendinopathy: a potential mechanism for the chondron-ossification and failed healing in patellar tendinopathy. / CUHK electronic theses & dissertations collection

January 2011 (has links)
Chronic patellar tendinopathy is a degenerative tendon disorder characterized by chronic activity-related, anterior knee pain associated with localized tenderness, swelling and impaired performance, which is a common clinical problem in athletes. The pathogenesis of patellar tendinopathy is still largely unknown, although tendon overuse is the most commonly suggested etiological factor, and treatment is usually symptomatic. / Histopathologically, the predominant feature of patellar tendinopathy is tendinosis, which is characterized by progressive tissue degeneration with a failed healing response and the absence of inflammatory cells. Hypercellularity with non-tenocyte phenotype cells and tissue metaplasia, including hyaline metaplasia, fibrocartilaginous metaplasia and bony metaplasia were observed in clinical patellar tendinopathy samples. The degeneration of patellar tendon in patellar tendinopathy is an active cell-mediated process rather than a passive degenerative process. Using a patellar tendinopathy animal model, we observed the presence of chondrocytic and osteoblastic phenotype / markers in patellar tendinopathy samples with or without ossification, which was consistent with the findings in clinical samples. Interestingly, chondrocyte makers were expressed by healing tendon cells at week 2 which became round prior to their expression in the chondrocyte-like cells at week 4. This leads us to speculate that erroneous differentiation of tendon-derived stem cells (TDSCs) identified recently in tendon tissues by our group, to chondrocyte / osteoblasts, due to alteration of mechanical and biological microenvironment during overuse, may lead to the ectopic chondro-ossification and failed healing in patellar tendinopathy. Osteo-chondrogenic BMPs, such as BMP-2, BMP-4 and BMP-7 might be possible factors regulating the osteo-chondrogenic differentiation of TDSCs in the pathogenesis of patellar tendinopathy. / In conclusion, our results have provided new insights about the pathological mechanisms of patellar tendinopathy involving the resident stem cells, osteo-chondrogenic BMPs and mechanical overloading. Erroneous differentiation of TDSCs to chondrocytes / osteoblasts due to ectopic osteo-chondrogenic BMP-2 expression, which were induced by repetitive tensile loading stimulation, might account for the chondro-ossification and failed healing in patellar tendinopathy. Re-directing of stem cells for tenogenic differentiation by blocking the ectopic expression of osteo-chondrogenic BMPs may help to promote tendon healing in patellar tendinoapthy. / In this study, we hypothesized that (1) TDSCs isolated from pathological patellar tendon of the CI model will exhibit higher osteogenic and chondrogenic differentiation potential but lower proliferative capacity compared to TDSCs isolated from healthy patellar tendon. Rat pathological tendon in our collagenase-induced failed healing animal model will harbor more TDSCs compared to healthy patellar tendon. (2) Osteo-chondrogenic BMPs, such as BMP-2, BMP-4, and BMP-7, will be expressed ectopically in both preclinical and clinical samples of patellar tendinopathy. (3) BMP-2 will promote osteo-chondrogenic differentiation and inhibit tenogenic differentiation of TDSCs in vitro. (4) Repetitive tensile loading will increase the expression of BMP-2 in TDSCs in vitro. / Our results showed that TDSCs isolated from the collagenase-induced tendinopathic patellar tendon of the animal model exhibited higher osteogenic/chondrogenic differentiation potential as well as lower proliferative capacity, supporting that there might be some defects in the TDSCs from the animal model, which might undergo osteo-chondrogenic differentiation and hence reduced the pool of TDSCs for tendon repair in the development of patellar tendinopathy. The higher clonogenicity and increased yield of TDSCs in tendinopathic patellar tendon might be caused by a compensation for the impaired differentiation potential and proliferative capacity of TDSCs. The histopathological features of our clinical patellar tendinopathy were characterized by tissue degeneration. Non-tenocyte phenotype cells and tissue metaplasia, such as chondrocyte-like cells and endochondral ossification were also observed. We observed the ectopic expression of osteo-chondrogenic BMP-2, BMP-4 and BMP-7 in both our animal model and clinical samples of patellar tendinopathy, which might trigger the erroneous differentiation of TDSCs to non-tenocytes. Indeed, we further showed that BMP-2 could promote the osteo-chondrogenic and inhibit tenogenic differentiation of TDSCs in vitro, which might provide a possible explanation for ectopic chondro-ossification and failed healing in patellar tendinopathy. In addition, our results also showed that in vitro repetitive cyclic tensile loading could increase the expression of BMP-2 in TDSCs, which might provide a possible explanation for the ectopic expression of BMP-2 in patellar tendinopathy. / This study aimed to compare the osteogenic / chondrogenic differentiation potential, proliferative capacity and yield of TDSCs isolated from rat healthy patellar tendon and pathological tendon in our collagenase-induced failed tendon healing animal model of patellar tendinopathy in vitro. The histopathological characteristics of our clinical patellar tendinopathy with or without ossification were examined. The ectopic expression of BMP-2, BMP-4, and BMP-7 in both human and rat samples of patellar tendinopathy was also examined. The effects of BMP-2 on the osteogenic, chondrogenic and tenogenic differentiation of TDSCs was further investigated in vitro. The effect of repetitive tensile loading on the expression of BMP-2 in TDSCs was studied in vitro. / Rui, Yunfeng. / Advisers: Kai Ming Chan; Po Yee Lui. / Source: Dissertation Abstracts International, Volume: 73-06, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 172-193). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
49

Rôles des Bone Morphogenetic Proteins dans la conversion adipocytaire et le développement du tissu adipeux humain / Roles of bone morphogenetic proteins in adipose conversion and human adipose tissue developement

Boulet, Nathalie 30 January 2015 (has links)
Les adipocytes (cellules spécialisées dans le stockage des graisses) sont formés à partir de cellules immatures appelées cellules progénitrices lors du processus d'adipogenèse. Chez l'homme, les différentes étapes de ce processus sont mal connues ainsi que les signaux qui le régulent. La première partie de mon travail de thèse a eu pour but de caractériser la cellule intermédiaire entre la cellule progénitrice et l'adipocyte : le préadipocyte. La deuxième partie a consisté à évaluer le rôle des protéines morphogénétiques de l'os (ou BMP), des inducteurs de l'adipogenèse décrits chez la souris, dans l'adipogenèse humaine. Nous avons montré que les BMP2, 4 et 7 sont produites dans le tissu gras humain et BMP7 est modulée par l'obésité. Les BMP2 et 4 induisent l'adipogenèse des cellules progénitrices humaines mais seule la BMP7 permet la production d'adipocytes particuliers " beiges " décrits pour consommer les lipides et produire de la chaleur. Ces travaux affinent nos connaissances sur les mécanismes impliqués dans l'expansion du tissu gras et permettront d'élaborer des stratégies pour lutter contre le développement des pathologies liées à l'obésité. / Adipocytes (cells specialized in fat storage) arise from immature cells, called progenitor cells, during the process of adipogenesis. In human, the different stages of adipogenesis are not well defined as well as the signals involved in adipogenic modulation. The first part of my thesis work aimed to characterize the intermediate cell state between progenitor cell and mature adipocyte: the preadipocyte. The second part aimed to evaluate the role of bone morphogenetic proteins (BMPs) in human adipogenesis. In mice, BMP2 and BMP4 induce classical adipogenesis whereas BMP7 leads to the production of "brite" adipocytes with the capacity to use lipids to produce heat. We have shown that BMP2, 4 and 7 are produced in human fat depots and BMP7 is modulated by obesity. BMP2 and 4 induce classical adipogenesis and BMP7 only induces brite adipogenesis from human progenitor cells. These works improve our knowledge about the mechanisms involved in the expansion of fat depot and may allow the identification of new strategies to fight against the development of obesity-associated pathologies.
50

Die Rolle von Bone Morphogenetic Protein 4 und 7 bei der hypertensiven Nephrosklerose / The role of Bone Morphogenetic Protein 4 and 7 in hypertensive nephrosclerosis

Maatouk, Imad 13 November 2012 (has links)
No description available.

Page generated in 0.0729 seconds