• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Factor inhibiting ATF4-mediated transcription is a novel leucine zipper transcriptional repressor that regulates bone mass

Yu, Vionnie Wing Chi. January 2007 (has links)
Skeletal development is a complex event that requires a delicate balance between bone formation and bone resorption. Multiple transcription factors expressed in the bone-forming cells, osteoblasts, play crucial roles during the process of bone formation. Among them, ATF4 (Activating Transcription Factor 4) is a basic domain-leucine zipper transcriptional activator that is responsible for osteoblast differentiation, osteoblast-specific genes expression, synthesis of type I collagen, and osteoclast differentiation. Mice deficient for ATF4 are runted and exhibit severe skeletal dysplasia. Our laboratory has discovered Factor Inhibiting ATF4-mediated Transcription (FIAT), whose name was coined for its interaction with ATF4 and subsequent repression of ATF4-mediated osteocalcin gene transcription. FIAT is a leucine zipper nuclear molecule lacking a basic domain for DNA binding. We hypothesize that FIAT suppresses the bone-forming activities of osteoblasts by interacting with ATF4 and thereby blocking ATF4 attachment to the DNA to mediate downstream signalling pathways. To prove this hypothesis, we monitored the expression profiles of FIAT in parallel with ATF4 during osteoblastogenesis. Mechanism of FIAT repression of ATF4 was investigated through structure-function and mutation analysis. The physiological significance of FIAT expression in osteoblasts was studied through silencing FIAT in osteoblasts by RNA interference, as well as through characterization of two genetic mouse models: FIAT transgenic mice which overexpress FIAT in osteoblasts, and osteoblast-specific FIAT knockout mice. These studies showed that FIAT and ATF4 are co-expressed in osteoblasts, and that FIAT inhibition of matrix mineralization requires dimerization with ATF4 through the second leucine zipper. Furthermore, transgenic mice overexpressing FIAT exhibited osteopenia whereas FIAT knockout mice showed enhanced bone formation. These results support our hypothesis and demonstrate that FIAT is a key transcriptional repressor that modulates osteoblast function.
2

Factor inhibiting ATF4-mediated transcription is a novel leucine zipper transcriptional repressor that regulates bone mass

Yu, Vionnie Wing Chi. January 2007 (has links)
No description available.
3

The role of Vitamin D metabolic enzymes in bone development and repair /

Naja, Roy Pascal. January 2008 (has links)
The CYP27B1 enzyme that synthesizes 1alpha,25-(OH) 2D, is expressed in chondrocytes, suggesting that local production of 1alpha,25-(OH)2D could play an autocrine or paracrine role in the differentiation of these cells. To test this hypothesis, we have engineered mutant mice that do not express the Cyp27b1 gene in chondrocytes. This led to increased width of the hypertrophic zone of the growth plate at E15.5, increased bone mass in neonatal long bones, and increased expression of the chondrocytic differentiation markers Indian Hedgehog and PTH/PTHrP receptor. VEGF mRNA levels were decreased, accompanied by decreased PECAM-1 immunostaining, suggesting a delay in vascularization. We have also engineered mice overexpressing a Cyp27b1 transgene in chondrocytes. The transgenic mice showed a partial mirror image phenotype compared to the tissue-specific inactivation model. These results support an autocrine/paracrine role of 1alpha,25-(OH) 2D in endochondral ossification and chondrocyte development in vivo. / The CYP24A1 enzyme is involved in the catabolic breakdown of 1alpha,25-(OH)2D but also synthesizes the 24R,25-(OH) 2D metabolite. Studies in chicken suggest a role for 24R,25-(OH) 2D in fracture repair. We induced stabilized transverse mid-diaphysial fractures of the tibia in four-month-old wild-type and Cyp24a1-deficient mice. Examination of the callus sections showed delayed hard callus formation in the homozygous mutant animals compared to wild-type littermates. RT-qPCR showed perturbed levels of type X collagen transcripts in mutant mice at 14 and 21 days post-fracture, reflecting the delayed healing. Rescue of the impaired healing by subcutaneous injection of 24R,25-(OH)2D3 normalized the histological appearance of the callus, static histomorphometric index and type X collagen mRNA expression, while 1alpha,25-(OH)2D 3 did not. These results show that Cyp24a1 deficiency delays fracture repair and strongly suggest that vitamin D metabolites hydroxylated at position 24, such as 24R,25-(OH)2D, play an important role in the mechanisms leading to normal fracture healing.
4

An investigation of the morphological and mechanical properties of cancellous bone in rheumatoid arthritis and osteoarthritis of the hip

Breckon, Anke 06 April 2017 (has links)
No description available.
5

The role of Vitamin D metabolic enzymes in bone development and repair /

Naja, Roy Pascal. January 2008 (has links)
No description available.
6

Bone adaptation under mechanical influence: regional differences in bone mineral density, degree of mineralisation, mirco-arhitecture evaluated by pQCT, BSE imaging and microCT. / CUHK electronic theses & dissertations collection

January 2006 (has links)
Lai Yau Ming. / "August 2006." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 260-290). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
7

Kalirin : novel role in osteocyte function

Wayakanon, Kornchanok January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Communication between bone cells is important for the maintenance of bone mass. Although osteocytes are deeply embedded within the mineralized matrix, they are essential for the regulation of osteoblast and osteoclast functions. However, the intracellular proteins that control the morphology and function of osteocytes, and their ability to communicate with other bone cells are still unknown. Kalirin is a novel multi-domain GTP exchange factor (GEF) protein that activates the RhoGTPases. Recently, we found that 14 week old female Kalirin knockout (Kal-KO) mice exhibit a 45% decrease in trabecular bone density and have significantly lower cortical area, perimeter, thickness and polar cross-sectional moment of inertia (-12.6%, -7.2%, -7.6% and -21.9%, respectively) than WT mice. Kalirin was found to be expressed in osteoclasts and osteoblasts but its expression and function in osteocytes is currently unclear. We examined the role of Kalirin on the morphology and function of osteocytes. Primary osteocytes were isolated by sequential collagenase digestions from long bones (femurs and tibias) of 10-week old WT and Kal-KO mice. Immunofluorescent staining revealed Kalirin was localized to the perinuclear region of primary osteocytes and MLO-Y4 cells, and was detected along the cytoplasmic processes of primary osteocytes. We also examined primary osteocytes isolated from the long bones of Kal-KO and WT mice for changes in the length and number of cytoplasmic processes. Kal-KO osteocytes were found to express significantly fewer cytoplasmic processes per cell (3.3±0.21) than WT osteocytes (4.7±0.3). In addition, the cytoplasmic processes of Kal-KO osteocytes were shorter (79.5±4.6 µm) than those observed for WT osteocytes (85.4±3.6 µm) (p <0.01). Quantitative PCR revealed the expression of mRNA for the three major Kalirin isoforms (Kal-7, Kal-9, Kal-12) in primary osteocytes and in MLO-Y4 cells. Moreover, the mRNA levels of osteoprotegerin (OPG) and SOST, which are important for controlling osteoclast differentiation and Wnt signaling leading to bone formation, respectively, were reduced in Kal-KO osteocytes. Next, the role of Kalirin in osteocyte morphology and function was further examined. Treatment of MLO-Y4 cells for 5 days with nerve growth factor, which is known to activate Kalirin in neurons, or over-expression of the Ser-Thr kinase domain of Kal-12, promoted cytoplasmic process elongation and upregulated phosphorylated ERK and RhoA levels. Together, these results suggest that Kalirin controls osteocyte morphology and function in part by regulating cytoskeletal remodeling and the activity of ERK and RhoA. Furthermore, Kalirin may control the bone remodeling cycle by regulating osteocyte signaling to osteoclasts and osteoblasts.

Page generated in 0.1045 seconds