Spelling suggestions: "subject:"one mechanical properties"" "subject:"done mechanical properties""
1 |
The Consequences of Collagen Degradation on Bone Mechanical PropertiesWynnyckyj, Chrystia 23 February 2011 (has links)
The mechanisms underlying the effect of alterations in Type I collagen on bone mechanical properties are not well defined. Clinical tools for evaluating fracture risk, such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS) focus on bone mineral and cannot detect changes in the collagen matrix. The mechanical response tissue analyzer (MRTA) is a potential tool for evaluating fracture risk. Thus, the focus of this work was to investigate the effects of collagen degradation on bone mechanical properties and examine whether clinical tools can detect these changes.
Female and male emu tibiae were endocortically treated with 1 M potassium hydroxide (KOH) solution for 1-14 days and then either mechanically tested in three-point bending, fatigued to failure or fatigued to induce stiffness loss. Computed Tomography scans, DXA, QUS, MRTA and three-point bend testing in the elastic region were performed on emu tibiae before and after either KOH treatment or fatigue to induce stiffness loss. Fracture surfaces were examined to determine failure mechanisms. Bone mineral and bone collagen were characterized using appropriate techniques. Bone mineral-collagen interface was investigated using Raman spectroscopy and atomic force microscopy (AFM).
Endocortical KOH treatment does not affect bone mineral however, it causes in situ collagen degradation, rather than removal and may be weakening the mineral-collagen interface. These changes result in significantly compromised mechanical properties. Emu tibiae show significant decreases in failure stress and increased failure strain and toughness, with increasing KOH treatment time. The significant increase in toughness of KOH treated bones is due to structural alterations that enhance the ability of the microstructure to dissipate energy during the failure process, thereby slowing crack propagation, as shown by fracture surface analysis. KOH treated samples exhibit a lower fatigue resistance compared to untreated samples at high stresses only for both sexes. Partial fatigue testing results in similar decreases in modulus for all groups and sexes. The MRTA detected these changes whereas DXA and QUS did not. MRTA detects changes in bone mechanical properties induced by changes in collagen quality and fatigue and could be a more effective tool for predicting fracture risk.
|
2 |
The Consequences of Collagen Degradation on Bone Mechanical PropertiesWynnyckyj, Chrystia 23 February 2011 (has links)
The mechanisms underlying the effect of alterations in Type I collagen on bone mechanical properties are not well defined. Clinical tools for evaluating fracture risk, such as dual energy x-ray absorptiometry (DXA) and quantitative ultrasound (QUS) focus on bone mineral and cannot detect changes in the collagen matrix. The mechanical response tissue analyzer (MRTA) is a potential tool for evaluating fracture risk. Thus, the focus of this work was to investigate the effects of collagen degradation on bone mechanical properties and examine whether clinical tools can detect these changes.
Female and male emu tibiae were endocortically treated with 1 M potassium hydroxide (KOH) solution for 1-14 days and then either mechanically tested in three-point bending, fatigued to failure or fatigued to induce stiffness loss. Computed Tomography scans, DXA, QUS, MRTA and three-point bend testing in the elastic region were performed on emu tibiae before and after either KOH treatment or fatigue to induce stiffness loss. Fracture surfaces were examined to determine failure mechanisms. Bone mineral and bone collagen were characterized using appropriate techniques. Bone mineral-collagen interface was investigated using Raman spectroscopy and atomic force microscopy (AFM).
Endocortical KOH treatment does not affect bone mineral however, it causes in situ collagen degradation, rather than removal and may be weakening the mineral-collagen interface. These changes result in significantly compromised mechanical properties. Emu tibiae show significant decreases in failure stress and increased failure strain and toughness, with increasing KOH treatment time. The significant increase in toughness of KOH treated bones is due to structural alterations that enhance the ability of the microstructure to dissipate energy during the failure process, thereby slowing crack propagation, as shown by fracture surface analysis. KOH treated samples exhibit a lower fatigue resistance compared to untreated samples at high stresses only for both sexes. Partial fatigue testing results in similar decreases in modulus for all groups and sexes. The MRTA detected these changes whereas DXA and QUS did not. MRTA detects changes in bone mechanical properties induced by changes in collagen quality and fatigue and could be a more effective tool for predicting fracture risk.
|
3 |
CLASSIFICATION OF BOUND WATER AND COLLAGEN DENATURATION STATUS OF CORTICAL BONE BY RAMAN SPECTROSCOPYUNAL, MUSTAFA 08 February 2017 (has links)
No description available.
|
4 |
Influence des modifications post-traductionnelles du collagène de type I osseux sur l’activité de la cathepsine K et sur les propriétés mécaniques de l’os / Inluence of type I bone collagen posttranslational modifications on cathepsin k activity and bone mechanical propertiesBorel, Olivier 13 September 2012 (has links)
Le collagène de type I osseux subit une série de modifications post-traductionnelles au cours du processus de maturation. Un certain nombre de ces modifications sont quantifiables par dosage : c’est le cas des molécules de pontage enzymatiques pyridinoline (PYD) et désoxypyridinoline (DPD), de la pentosidine (PEN) qui est un produit de glycation, et de la forme native (α) et isomérisée (β) des C-télopeptides (α et β CTX) du collagène de type I. A l’aide d’un modèle de maturation in vitro d’os bovin foetal, nous avons montré que le taux de solubilisation du collagène osseux par la cathepsine K augmente avec la durée d’incubation des os à 37°C. Nous avons également montré que cette augmentation est corrélée au taux des modifications post-traductionnelles du collagène mesurées. Lors d’une étude précédente utilisant ce même modèle de maturation d’os foetal, nous avions déterminé que les modifications post-traductionnelles du collagène osseux influençaient les propriétés mécaniques de l’os. Dans le cadre de ce travail de thèse et pour compléter cette étude, nous avons mis au point un modèle pour étudier isolément l’influence des molécules de pontage PYD et DPD sur les propriétés mécaniques de l’os. Ce modèle utilise de l’os cortical bovin traité aux U.V. puis soumis à des tests de flexion trois points. Dans la même optique, nous avons contribué à la mise au point d’un dosage en chromatographie en phase liquide à haute performance qui permet de quantifier à la fois les formes matures et immatures des molécules de pontage pyridinoliques (PYD, DPD, HLNL et DHLNL) sur le même chromatogramme / Type I bone collagen undergoes a series of posttranslational modifications during maturation process. Some of them are quantifiable by assays: the enzymatic cross-links pyridinoline (PYD) and deoxypyridinoline (DPD), the advanced glycation end product pentosidine (PEN), and the native (α) and isomerized (β) forms of the type I collagen C-telopeptides (α and β CTX). With an in vitro model of bovine fetal bone maturation, we showed that bone collagen solubilization by cathepsin K increases with the duration of bone incubation at 37°C. We also showed a correlation between this increase of solubilization and the level of measured collagen posttranslational modifications. In a previous study, using the same fetal bovine bone maturation, our results had suggested a link between bone collagen posttranslational modifications and bone mechanical properties. In the aim to complete this study, we developed a model to focus on PYD and DPD influence in bone mechanical properties. This model uses bovine cortical bone subjected to ultraviolet light before three points binding tests. In the same purpose, we contributed to develop a High-Performance Liquid Chromatography essay, quantifying mature and immature forms of pyridinium crosslinks (PYD, DPD, HLNL and DHLNL) in an unique chromatogram
|
5 |
Polyhydroxybutyrate als Scaffoldmaterial für das Tissue Engineering von KnochenWollenweber, Marcus 10 May 2012 (has links)
In drei inhaltlich abgeschlossen Teilen werden Fragestellungen bearbeitet, die sich mit dem Einsatz von Polyhydroxybutyraten als Scaffoldmaterialien für das Tissue Engioneering von Knochen beschäftigen. Zunächst wird ein Prozess optimiert, in dem mittels Verpressen und Auslösen von Platzhaltern (Porogen) poröse Träger (Scaffolds) aus Poly-3-hydroxybuttersäure (P3HB) sowie aus P3co4HB hergestellt werden. Diese Scaffolds werden in der Folge mechanisch und strukturell charakterisiert, wobei Druckfestigkeit, Dauerfestigkeit und Viskoelastizität untersucht werden. Im Ergebnis finden sich mehrere Kandidaten, die für die weitere Testung im Tierversuch in Frage kommen.
Weiter wird das Abbauverhalten von schmelzgeponnenen P3HB-Fäden untersucht. Dabei wird ein beschleunigtes Modellsystem gewählt, das noch möglichst nahe am physiologischen Fall aber ohne biologisch aktive Komponente (zB. Enzyme) definiert wurde. Die Charakterisierung bedient sich hier der Gelpermeationschromatographie (GPC), des gasgestützten Elektronenrastermikroskops (ESEM), der differentiellen Thermoanalyse (DSC) und der Rasterkraftmikroskopie. Als Ergebnis zeichnete sich ab, dass neben der hydrolytischen Degradation im Gegensatz zu PHB mit kleinerer spezifischer Oberfläche bei den Fäden auch Erosion zum Abbau beiträgt. Eine partikuläre Freisetzung wird nicht beobachtet.
Im dritten Teil werden textile Scaffolds aus P3HB mit einer künstlichen extrazellulären Matrix aus Chondroitinsulfaten (CS) und Kollagen versehen. Dem CS kann hier ein positiver Einfluss auf die osteogene Differenzierung von humanen mesenchymalen Stammzellen (hMSC) nachgewiesen werden. Dies wird zum einen durch die verstärkte Expression der alkalischen Phosphatase (ALP) sowie durch die Hochregulation von Proteinen ersichtlich, die bei der osteogenen Differenzierung essentiell sind. In wenigen Gene-Arrays lässt sich ebenfalls erkennen, dass die osteogene Differenzierung durch CS positiv beeinflusst wird. Insbesondere frühe Marker wie ZBTB16 und IGFBPs werden hier identifiziert.
Basierend auf den Teilergebnissen wird am Ende ein Beitrag geliefert, der das Tissue Engineering insbesondere für überkritische Röhrenknochendefekte als Methode interessant erscheinen lässt. Dabei werden mechanische Lasten durch konventionelle Fixateure aufgenommen und der Defektraum durch den mehrfachen Einsatz von bio-funktionalisierten flachen Scaffolds gefüllt.:1. Vorwort 3
2. Allgemeine Einführung 5
2.1 Der Knochen 5
2.1.1 Die Knochenbildung 5
2.1.2 Zur Anatomie und Physiologie des Knochens 7
2.2 Tissue Engineering 11
2.2.1 Zelltypen für das Tissue Engineering von Knochen 12
2.2.2 Scaffold Design im Tissue Engineering von Knochen 13
2.3 Polyhydroxyalkanoate 13
2.4 Tissue Engineering am Röhrenknochen 16
2.4.1 Poly(3-hydroxybutyrat)-Scaffolds für das Tissue Engineering von Knochenersatz 17
2.4.2 Matrix Engineering 18
2.5 Ziel der Arbeit 19
3. Mechanik poröser PHB-Scaffolds 21
3.1 Einleitung 21
3.2 Materialien und Methoden 23
3.2.1 Polyhydroxybutyrate und Porogene 23
3.2.2 Uniaxiales Heißpressen 24
3.2.3 Mikrographie 26
3.2.4 Dynamische Differenzkalorimetrie (DSC) 26
3.2.5 Mechanische Druckversuche 26
3.2.6 Mikrocomputertomographie (μCT) 27
3.2.7 Zellviabilität auf den Scaffolds 28
3.3 Ergebnisse 29
3.3.1 Mikrographie 29
3.3.2 Mikrocomputertomographie (μCT) 33
3.3.3 Druckversuche 37
3.3.4 Dynamische Differenzkalorimetrie (DSC) 40
3.3.5 Zellviabilität 40
3.4 Diskussion 40
3.5 Schlussfolgernde Zusammenfassung 46
4. Degradation von P3HB-Fasern 47
4.1 Degradation von Polyhydroxyalkanoaten 47
4.2 Materialien und Methoden 49
4.2.1 Herstellung und Vorbehandlung textiler P3HB-Konstrukte 49
4.2.2 Mechanische Prüfung 50
4.2.3 Beschleunigte Degradation 50
4.2.4 Untersuchung der Oberfläche 50
4.2.5 Dynamische Differenzkalorimetrie (DSC) 51
4.2.6 Gel-Permeations-Chromatographie (GPC) 51
4.3 Ergebnisse 52
4.3.1 Mechanische Tests 52
4.3.2 Die Charakterisierung der Oberfläche 52
4.3.3 Thermische Fasereigenschaften.55
4.3.4 Untersuchung der Molekulargewichte in der GPC 58
4.4 Diskussion 60
4.5 Schlussfolgernde Zusammenfassung 64
5. hMSC auf textilen Scaffolds 67
5.1 Einleitung 67
5.2 Material und Methoden 68
5.2.1 Erzeugung der P3HB-Scaffolds 68
5.2.2 Die Immobilisierung der EZM-Komponenten auf den Scaffolds 69
5.2.3 Isolation, Vorkultur, Besiedlung und Kultur der humanen mesenchymalen Vorläuferzellen 69
5.2.4 Kombinierte Bestimmung von ALP, MTT und Proteingehalt 71
5.2.5 Mikroskopische Untersuchungen 72
5.2.6 Nachweis der Kalziummineralisierung 73
5.2.7 Quantitative real time reverse transcribing polymerase chain reaction (rt-PCR) 73
5.2.8 cRNA Microarray-Untersuchung 74
5.2.9 Zusätzliche Experimente 75
5.3 Ergebnisse 76
5.3.1 Vorhergehende Untersuchung 76
5.3.2 Rasterelektronen-Mikroskopie 77
5.3.3 Konfokale Laser-Scanning-Mikroskopie 79
5.3.4 ALP-Aktivität, SDH-Aktivität und Proteingehalt 82
5.3.5 Mineralisierende Kalziumabscheidung 86
5.3.6 rt-PCR 87
5.3.7 cRNA Microarray-Untersuchung 90
5.3.8 Kulturen von hMSC mit Chondroitinsulfat als gelöstem Zusatz 93
5.4 Diskussion 93
5.5 Schlussfolgernde Zusammenfassung 98
6. Zusammenfassung 101
|
Page generated in 0.1138 seconds