• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 316
  • 295
  • 41
  • 40
  • 18
  • 10
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 847
  • 847
  • 316
  • 296
  • 284
  • 216
  • 215
  • 182
  • 121
  • 120
  • 86
  • 77
  • 75
  • 65
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Generation and characteriztion of regulatory dendritic cells for the amelioration of acute graft versus host disease

Scroggins, Sabrina Marie 01 December 2013 (has links)
Despite Human Leukocyte Antigen (HLA) matching and use of immunosuppressive drugs, graft-versus-host disease (GVHD) following hematopoietic stem cell transplant (HSCT) is prevalent and often fatal. Additionally, older HSCT recipients experience increased morbidity and mortality. Prophylactic treatment with age-matched syngeneic (recipient strain-derived) cultured regulatory DC (DCreg) has been shown to decrease GVHD-associated mortality in young bone marrow transplanted (BMT) mice. The purpose of this study was to investigate: 1) the potential to generate DCreg from older mice and their subsequent ability to ameliorate GVHD in older BMT mice, 2) the mechanism(s) by which DCreg mitigate GVHD in vivo, 3) the ability of DCreg-treated BMT mice to respond to infectious pathogens, and 4) whether DCreg can be generated under clinically relevant conditions from healthy donor and HSCT recipient PBMCs. To evaluate the efficacy of DCreg treatment in older mice, complete MHC-mismatched BMT mice were treated with DCreg (hereafter referred to as DCreg-treated BMT mice). Although DCreg treatment ameliorated GVHD in older BMT mice, these mice had increased morbidity and decreased survival compared to their young counterparts. Following transfer into BMT mice, older DCreg failed to increase inhibitory molecule (PD-L1 and PIR B) expression while significantly upregulating co-stimulatory molecule (CD40 and CD80) expression, conversely young DCreg upregulated inhibitory molecules as well as co-stimulatory molecules. These phenotypic differences between young and older DCreg in vivo provide a potential mechanism for modestly increased morbidity and mortality in older DCreg-treated BMT mice relative to their young counterparts. Indeed, BMT mice treated with DCreg deficient in PD-L1 or PIR B had significantly reduced overall survival, thus both molecules are required for optimal GVHD mitigation. A murine H1N1 influenza (IAV) infection model was used to assess the donor immune system's capacity to respond to relevant antigens other than those responsible for GVHD. Surprisingly, sub-lethally IAV-infected DCreg-treated BMT mice began to die after d. +21 and all were deceased by d. +25. Virus-specific CD8+ T cell and antibody (Ab) responses were undetectable following primary infection. Interestingly, following a prime-boost infection strategy, DCreg-treated BMT mice survived lethal IAV challenge with no signs of morbidity and had demonstrable IAV-specific Ab and CD8+ T cell responses. Thus a prime-boost IAV infection strategy establishes a protective immune response in the DCreg-treated BMT mice and underscores the potential role vaccination may play in establishing immune competence in DCreg-treated BMT mice. We investigated whether human DCreg can be generated under clinically relevant conditions: 1) following peripheral blood mononuclear cell (PBMC) cryopreservation, 2) in bovine serum-free media, and 3) from older individuals and HSCT recipients. DCreg were generated from healthy donor and HSCT patient PBMCs isolated from young (old) and older (> 50 years old) individuals by culturing cells in X-vivo serum-free. Human DCreg generated from both young and older healthy donor PBMCs had comparable numbers, surface molecule phenotype, cytokine production, and able to induce Treg. Cryopreserved and fresh PBMCs generated DCreg with similar phenotypes and cytokine production. DCreg generated from HSCT recipients maintained low co-stimulatory molecule and high inhibitory molecule expression as well as immunosuppressive cytokine production. These studies confirm DCreg can be generated under clinically relevant conditions.
282

Transplantace kostní dřeně, její historický vývoj a současné trendy / Bone marrow transplantation, its historical development and current trends

CIMBÁLNÍKOVÁ, Eva January 2019 (has links)
The transplantation of bone marrow - more generally said of hematopoietic cells - is in the present time one of the modern therapeutical methods used in cases of malfunction of haematogenesis inside of the bone. The ususal reason for going through with transplantation is leukemia, lymphomas, also anemia, congenital metabolic disorders, autoimmune disorders or some of the solid tumors. Thanks to the transplantation of hematopoietic cells, it is possible to highten the chance of restoration in more than 50 % of patients suffering from oncological disease. The submitted thesis is processed in theoretical form, it is goal is to present the important points leading to progress of this presently very much used treatment and also thorough descripton of present trends in the area of transplantation of hematopoietic cells, that are almost identical in local transplatation centers as they are in the world. Another goal is to describe the role of a general nurse during providing of the care for a patient before and after transplantation of hematopoietic cells. The thesis is focused on the key areas of the issues of transplatation of hematopoietic cells and it is divided into several parts. The first part deals with the general description of the topic, it presents short introduction into the transplantation of hematopoietic cells, the basic division, historical and current indications and short preamble into todays trends. It describes closely the area of the registry of the bone marrow donors, which is the basics for the choosing of the suitable unrelated donor. The second part of the thesis deals with the desciption of historical progress since the very beginnings, through the progress during postwar period, the development of 70s and 80s of the previous century and also the 90s of the 20th century up until the present day. The third part is focused on current methods of collection of hematopoietic cells and following transplatation, it also describes closely the ways of donating hematopoietic cells, the preparation of the patient for transplantation, the course of transplantation and what should the patient prepare for during the early posttransplantation period. The fourth part is focused on nursing, it states thoroughly the role of a nurse in the nursing care before and after transplantation of hematopoietic cells, the principles a nurse has to abide by, and it also closely describes the role of a nurse during transplant application. It also describes dietary and important regimen measures the patient is set to follow after transplantation. The last part is focused especially on complications that are possible after hemopoetic cells transplantation. The necessary data have been obtained through thorough study of professional Czech and foreign monoghraphs and scientific periodicals. The acquisition of the data was significantly contributed to by the attended internsip in Internal hematological and oncological clinic of the Faculty hospital Brno Bohunice. The findings regarding nursing were obtained especially by the study of nursing standards. This thesis points out the important role of transplatation of hemopoetic cells as a method of treatment predominantly of hemooncological illnesses in current medicine and the most important roles of a nurse during the nursing of transplantation patients. The thesis provides a comperehensive overview on the issue of transplants of the hematopoietic cells and describes key areas that are considered as important. It focuses on the historical progress and the desciption of present trends thanks to which the transplantology can be considered as a highly professional and top field. It also highlights the main roles of a nurse during nursing that must be proffesional, qualified, meticulous, considerate and individualized. The results of the survey are supposed to provide the professional and amateur public enough information about the issue of transplantation of the hematopoietic cells.
283

The bone marrow microenvironment in myelodysplastic syndromes : functional and molecular study / Le microenvironnement médullaire au cours des syndromes myélodysplasiques : étude fonctionnelle et moléculaire

Goulard, Marie 28 September 2017 (has links)
Les syndromes myélodysplasiques (MDS) sont un groupe de pathologies myéloïdes caractérisées par une hématopoïèse inefficace. Le rôle du microenvironnement médullaire (MM) dans l’histoire naturelle de ces pathologies reste incertain. Des anomalies du MM ont été décrites au cours des myélodysplasies et des modèles murins récemment publiés font penser qu’une altération du MM pourrait jouer un rôle dans le déclenchement et/ou l’évolution de ces maladies.Nous avons tenté de développer un modèle in vivo récapitulant l’histoire naturelle des myélodysplasies par des xénogreffes chez des souris NSG et NSG-S. Le faible taux de prise de greffe nous a amenés à développer un modèle in vitro de co-culture en 2D. Ce modèle est une bonne alternative pour les études de nouvelles stratégies thérapeutiques pour les patients atteints de myélodysplasies.Au cours de ce travail, nous avons également réalisé une étude systématique du stroma médullaire de patients atteints de syndromes myélodysplasiques dans le but d’identifier les anomalies fonctionnelles et moléculaires des cellules souches mésenchymateuses (CSMs), cellules centrales du MM pour leur interaction avec les cellules souches hématopoïétiques (CSHs).Les CSMs de MDS ont une clonogénécité diminuée. Nous n’avons pas observé de modification significative de leurs capacités de différenciation en ostéoblastes, adipocytes et chondrocytes ni dans leur capacité à supporter une hématopoïèse normale. Les CSMs de MDS présentent des modifications au niveau épigénétique et transcriptionnel pouvant expliquer l’altération des relations observées grâce à de l’imagerie enregistrée entre les CSMs de MDS et les CSHs dans un modèle de co-culture en 3D.Ces résultats montrent que les CSMs de MDS ont des modifications fonctionnelles et moléculaires et que ces anomalies perturbent leur relation avec les CSHs. / Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal myeloid pathologies characterized by an impaired hematopoiesis. The role of the bone marrow microenvironment (BMM) remains unclear in the natural history of these diseases. Abnormalities of the BMM have been observed in myelodysplasia and a recent published murine model implies that alterations of the BMM could play a role in the trigger/progression of these diseases.Firstly, we tried to develop an in vivo model of MDS in NSG and NSG-S mice. The low rate of engraftment pushed us to develop a 2D co-culture model in vitro. This model is a good alternative to test new therapeutic strategies for MDS patients.In this study, we analysed mesenchymal stromal cells (MSCs) from the bone marrow of pretreated MDS patients in order to identify the functional and molecular abnormalities in those cells of the BMM, central for their interactions with the hematopoietic stem cells (HSCs).MDS MSCs have an impaired clonogenic capacity. We didn’t observed modifications of their differentiation toward osteogenic, adipogenic and chondrogenic pathways and capacity to support of a normal hematopoiesis. MDS MSCs display epigenetic and transcriptomic modifications that could explain the alteration of the relationships between these cells and HSCs observed in imagery in a 3D co-culture model.These results showed that MDS MSCs have functional and molecular abnormalities and that these alterations could impair their relationship with HSCs.
284

The immunogenetics of natural killer cell alloreactivity

Foley, Bree Amanda January 2008 (has links)
[Truncated abstract] Natural killer (NK) cell alloreactivity can be exploited in haploidentical haematopoietic stem cell transplantation (HSCT) to improve graft survival, reduce graft versus host disease and decrease leukaemic relapse. NK cells lyse cells that have reduced expression of class I HLA molecules. In an allogeneic setting, donor NK cells may be activated by the absence of donor (self) class I HLA molecules on recipient cells; the absence of self-epitopes being detected by inhibitory KIR receptors on donor NK cells. The way in which genetic polymorphism of the receptors and ligands affects NK allorecognition of missing self, has not been fully elucidated. HLA-C molecules are divided into two groups, C1 and C2, with KIR2DL1 recognising cells expressing C2 and KIR2DL2 and KIR2DL3 recognising cells expressing C1. Donor NK cells expressing KIR2DL2 or KIR2DL3 can be alloreactive towards a recipient if they lack the C1 epitope and donor NK cells expressing KIR2DL1 can be alloreactive towards a recipient if they lack the C2 epitope. KIR3DL1 recognises the Bw4 epitope present on one-third of HLA-B alleles and certain HLA-A alleles. NK cells from donors expressing KIR3DL1 can be alloreactive towards recipients whose cells lack Bw4. Mismatches of KIR related HLA epitopes does not always results in NK alloreactivity. Therefore it is not possible to reliably predict NK alloreactivity based solely on the donor's HLA type and KIR repertoire and the recipient's HLA type. ... All Bw4-positive HLA-B alleles, with the exception of HLA-B*1301 and B*1302, protected targets from lysis. HLA-A*2402 and HLA-A*3201 unequivocally protected target cells from lysis whereas HLA-A*2501 and HLA-A*2301 provided only weak protection from lysis. KIR3DL1-dependent alloreactive NK clones were identified in donors whose only Bw4 positive allele was HLA-A*2402 but not in donors whose only Bw4 positive HLA allele was HLA-B*1301 or B*1302. Finally this thesis demonstrated that an activating KIR can control NK cell alloreactivity. Donors who are C2 negative and KIR2DS1 positive had NK cells that expressed the activating receptor KIR2DS1 and were capable of lysing cells expressing the C2 epitope. More so, KIR2DS1 dependent NK clones were shown to override inhibitory signals generated by NKG2A interacting with its ligand, HLA-E. The identification of these NK clones has important implications for haploidentical HSCT in that recipient expressing all three NK epitopes, C1, C2 and Bw4 were previously thought to be resistant to alloreactive NK cells controlled by inhibitory receptors. Such patients may be amenable to haploidentical HSCT from C2 negative, KIR2DS1 positive donors. These results will improve the ability to predict NK cell alloreactivity based on a donor's HLA type and KIR repertoire and the recipient?s HLA type.
285

The world according to mast cells the role of Kit in normal and neoplastic canine mast cells /

Lin, Tzu-yin, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 199-227).
286

Comparing the bone marrow donor registration drive at Oregon State University with peer institutions

Tsang, Christabelle W. 01 May 2003 (has links)
More than 30,000 children and adults are diagnosed with life-threatening blood diseases such as leukemia, anemia and lymphomas in the U.S. every year. A transplant of stem cells, obtained from the bone marrow of a healthy donor, can be a cure for these diseases. The National Marrow Donor Program's registry comprises almost five million potential donors, however, many ethnic minorities are still underrepresented in comparison to their percentage in the overall U.S. population. Since patients are more likely to find a matching donor within their own ethnic community, recruitment efforts have been focusing on minority donors since a number of years. A number of other studies are currently examining the psychosocial and physical effects of the donation experience, as well as identifying barriers against and reasons for donating bone marrow, using questionnaires and health models. However, none has yet looked at which recruitment settings work well for college campuses, to what extent the target group should be educated, and how the study results should be incorporated into the recruitment efforts to improve retention. Potential donor education was therefore the most important focus of a Bone Marrow Donor Registration Drive organized by the author on the OSU campus in January. 150 potential donors registered at the OSU drive, one third of them from ethnic minorities. This study examines if the drive's extensive education and outreach component had any impact on the number of newly recruited volunteer donors in comparison to OSU's peer institutions. Using the Chi square test, a proportion comparison was performed between the percentage of newly registered volunteer donors (both in total and broken down by ethnicity) among the eligible OSU student body, and the total eligible student body at each peer institution. While the hypothesis that the extensive education and promotion activities increased the number of recruited donors could not be confirmed, targeting the minorities on campus was successful, since a significantly higher proportion of minority students registered at the BMDRD than the proportion of minority students registered at OSU. Besides data on the impact of the promotional activities and the recruitment results, which can also be used for further research, the drive also yielded a protocol that can serve as a guideline for organizing future drives at OSU and other schools with similar resources. / Graduation date: 2003
287

Improving gene delivery efficiency by lipid modification of cationic polymers

Incani Ramirez, Vanessa 06 1900 (has links)
This thesis explores the capabilities of cationic polymers modified with lipids of different carbon chain length to deliver DNA molecules to primary cells and transformed cell lines. Our studies focus on two different polymers: polyethylenimine (PEI) and poly(L-lysine) (PLL). Firstly, PEI and PLL were conjugated to palmitic acid (C16). The delivery of plasmid DNA to rat bone marrow stromal cells (rat-BMSC) was evaluated by using a Green Fluorescent Protein gene expressing plasmid (pEGFP-N2) as a reporter system. The rationale for lipid substitution is to give the polymer an amphiphilic character so as to improve the transfection efficiency of native polymers by improving the DNA/polymer translocation through the phospholipid-rich cell membranes. In the case of PLL-C16, transfection efficiency was significantly increased (5 fold) as compared to native PLL, and it was significantly higher than commercially available cationic lipids (LipofectamineTM 2000 and FugeneTM). We further explore the use of other lipids with variable chain lengths (carbon chain length ranging from 8 to 18 saturated and unsaturated) in order to identify other candidates to enhance the gene delivery properties of the PLL. Lipid-modified PLL of high molecular weight (25 vs. 4 kDa) was found to be more effective in delivering plasmid DNA in rat-BMSC. We noted that C14-, C16- and C18-substituted PLL gave the most effective DNA delivery. Moreover, a correlation between the extent of lipid substitution and the plasmid DNA delivery efficiency was found Additionally, transgene expression by BMSC significantly increased when amphiphilic PLLs were used as compared to native PLL. The modified polymers were able to transfect the cells up to 7 days, after which the expression decreased. Encouraged by the successful transgene expression agents obtained by modifying low molecular weight PEI with the same series of lipids described above, we explored the possibility of modifying low molecular weight PEI (2 kDa) with longer lipids; saturated fatty acid (C22), trans fat (C18:1T) and essential fatty acids (C22:1, C22:6 and C18:3). Transfection efficiency proved to be cell dependent. Only the transformed 293T cells were able to express GFP compared to human-derived BMSC. The highest transfection efficiency was found with highly unsaturated lipid-substituted PEI (C18:3 and C22:6) and were able to increase transgene expression overtime (6 days). Furthermore, internalization studies indicated that effective transfection of these carries do not follow any known endocytosis pathway instead the DNA/carrier penetrates the plasma membrane directly. / Pharmaceutical Sciences
288

Regulation of Human Bone Marrow-Derived Stem Cells by Hepatocyte Growth Factor

Chen, Ketian 17 December 2009 (has links)
Bone formation and remodeling require continuous generation of osteoprogenitors from bone marrow stromal cells (MSC), which are regulated by local growth factors and hormones with putative roles in mesenchymal proliferation and differentiation. Hepatocyte growth factor (HGF) and its receptor c-Met are widely expressed in MSC and are thought to play a key role in the interactions between cells. 1,25-dihydroxyvitamin D (1,25OHD) is the most active metabolite of vitamin D. 1,25OHD binds to its nuclear/membrane vitamin D receptor (VDR) and generates appropriate biological responses. The purpose of this study was to investigate the regulation of proliferation and differentiation by HGF in human bone marrow-derived stromal cells (hMSC). We examined the impact of HGF on hMSC cell-cycle regulation and the combination effects of HGF and 1,25OHD on hMSC osteogenic differentiation to enhance our knowledge of hMSC regulation. hMSC isolated from bone marrow were plated and grown in DMEM supplemented with 3% FBS incubated at 37C with 5% CO2 in air. HGF treatment of hMSCs reduced the rate of cell proliferation and this result was not due to apoptosis or cell senescence. Real-time RT-PCR and Western blot analysis showed increased gene and protein expression of the cell-cycle inhibitors p53, p21, and p27 after HGF treatment. These results appear to be specific because HGF did not significantly alter the gene expression level of other cell-cycle mediators such as RB, cyclin D1, CDK2, CDK4, or CDK6. Transfection of siRNA specific for cMet, the HGF receptor, eliminated the HGF anti-proliferation effect. cMet siRNA also eliminated the increase in p53, p21, and p27, further supporting a role for these cell-cycle inhibitors in HGF¡¯s regulation of hMSC. These results suggest that treatment of hMSC with HGF slows cell proliferation by increasing the expression of p53, p21, and p27. The reduced rate of cell proliferation did not appear to be due to cell differentiation, because treatment of hMSC with HGF alone did not induce cell differentiation. However, HGF in combination with a known osteogenic differentiation activator, 1,25OHD, significantly increased cell maturation/differentiation compared to 1,25D alone, as indicated by an increase in osteocalcin mRNA (a marker for osteogenic differentiation). Whereas HGF had no effect on 1,25OHD synthesis per se, HGF did induce 1,26OHD receptor (VDR) gene expression. HGF up-regulated the expression of the p63 gene, a member of the p53 family. Knocking down the p63 gene reduced the HGF effect on VDR expression and eliminated the HGF-induced up-regulation of the osteogenic differentiation markers osteopontin (OPN) and bone sialoprotein (BSP). Moreover, the ChIP assay shows that p63 was able to bind to the VDR promoter, possibly explaining the mechanism of p63-mediated VDR up-regulation. These results indicate that HGF can also induce hMSC osteogenic differentiation when combined with 1,25OHD by up-regulating 1,25OHD receptor VDR expression.
289

Étude des propriétés hémato-supportives in vitro des cellules souches mésenchymateuses

Briquet, Alexandra 18 December 2009 (has links)
Bone marrow (BM) mesenchymal stem cells (MSC) support proliferation and differentiation of hematopoietic progenitor cells (HPC) in vitro. Since they represent a rare subset of BM cells, MSC preparations for clinical purposes involves a preparative step of ex vivo multiplication. The aim of our study was to analyze the influence of culture duration on MSC supportive activity. MSC were expanded for up to 10 passages. MSC and CD34+ cells were seeded in cytokinefree co-cultures after which the phenotype, clonogenic capacity and in vivo repopulating activity of harvested hematopoietic cells were assessed. Early passage MSC supported HPC expansion and differentiation toward both B lymphoid and myeloid lineages. Late passage MSC did not support HPC and myeloid cell outgrowth but maintained B cell supportive ability. In vitro maintenance of NOD/SCID mouse repopulating cells cultured for one week in contact with MSC was effective until the fourth MSC passage and declined afterwards. CD34+ cells achieved higher levels of engraftment in NOD/SCID mice when co-injected with early passage MSC; however MSC expanded beyond 9 passages were ineffective in promoting CD34+ cell engraftment. Non-contact cultures indicated that MSC supportive activity involved diffusible factors. Among these, interleukin (IL)-6 and IL-8 contributed to the supportive activity of early passage MSC but not of late passage MSC. MSC phenotype as well as fat, bone and cartilage differentiation capacity did not change during MSC culture. Extended MSC culture alters their supportive ability toward HPC without concomitant changes in phenotype and differentiation capacity.
290

Hyaluronan in normal and malignant bone marrow : a clinical and morphological study with emphasis on myelofibrosis

Sundström, Gunnel January 2005 (has links)
Fibrosis in the bone marrow is usually denominated myelofibrosis and may contribute to impaired hematopoiesis. Myelofibrosis is seen both in malignant and non-malignant diseases. The normal microenvironment in the bone marrow consists of a heterogenous population of hematopoietic and non-hematopoietic stromal cells, their extracellular products and hematopoietic cytokines. The stromal cells produce a complex array of molecules, among others collagens and glycosaminoglycans (GAGs) of which hyaluronan (HYA) is the most abundant. Marrow fibrosis results from an increased deposition of collagens, which are polypeptides. Staining for reticulin, mostly composed of collagen type III, is the common way of visualizing myelofibrosis. HYA, like the collagens, is widely distributed in connective tissues. Little is known about the distribution of HYA in bone marrow. The aims of this thesis have been to determine how HYA is distributed in normal and malignant bone marrow, compared to reticulin staining, and to follow patients with chronic myeloproliferative diseases (CMPD) during two years treatment with anagrelide considering development of cellularity and fibrosis. In bone marrow biopsies from healthy volunteers, the controls, HYA was found in a pattern that was concordant with the reticulin staining. Comparing patients with different malignant diseases with and without bone marrow involvemen, HYA staining was found to be significantly stronger in both groups compared to the controls. The HYA scores were also significantly higher in the bone marrow of patients with de novo acute myeloid leukemia (AML), compared to the controls. There was a correlation between HYA and reticulin in the patients with de novo AML, and in the patients with different malignant diseases with and without bone marrow involvement as in the controls. Increase of HYA, reticulin and cellularity in the bone marrow of patients with CMPD after two years of treatment with anagrelide indicated progression of fibrosis. Anagrelide is a valuable drug for reduction of platelets but seems unable to stop progression of fibrosis and hypercellularity. HYA is an interesting molecule with properties not only contributing to the structure of extracellular matrix but also to cell signaling and behaviour, although the understanding of the detailed mechanisms is still incomplete.

Page generated in 0.0551 seconds