• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Numerical Simulation of the Ground Water System at the Bonneville Navigation Lock Site, Oregon

Baron, Dirk 01 January 1990 (has links)
As part of the new navigation lock for Bonneville Dam a new water source for the Bonneville Fish Hatchery must be supplied. The hatchery is located on the Oregon side of the Columbia River downstream of the dam. It requires large quantities of water free from chemical and biological contamination. In addition, the water has to be in a narrow temperature range. Currently the fish hatchery receives its water from a well field that is located on the alluvial terrace downstream of Bonneville Dam. The well field lies in the proposed approach channel for the new lock and has to be abandoned during construction of the lock. For the continued water supply of the hatchery, a new well field will be developed north of the approach channel. Early in the planning phase for the new lock, concerns were raised about the potential impact of the relocation of the well field and the excavation of the new approach channel on the hatchery. To assess these concerns and to assure a continuous water supply during and after construction, a hydrogeologic investigation was initiated. Within the framework of the investigation this study focuses on the analysis of pumping test data and the development of a three-dimensional ground water flow model for the site. In the first phase of the study, data from eight pumping tests were analyzed. Hydrogeologic properties of the sedimentary units that make up the downstream terrace were determined. The focus was the pre-slide alluvium (PSA) aquifer, the water source for the existing and the future well field. In addition, the nature and location of hydrogeologic boundaries for the ground water system were determined. The results, in conjunction with information from subsurface exploration and laboratory tests, were used to develop a conceptual understanding of the ground water system at the site. The PSA aquifer receives its recharge primarily from leakage through the overlying confining layers over a large area. A direct connection between the Columbia River and the PSA aquifer could not be detected. They appear to be separated by a continuous aquitard layer or by a layer of fine-grained sediments on the river bottom. Based on these findings, in the second phase of the study, the ground water modeling program HST3D (Kipp, 1987) was used to develop a three-dimensional ground water model for the site. The model was calibrated with data from one of the pumping tests. The calibration was then verified with a second set of conditions including pumping from shallow and deep wells. Water levels in the deep PSA aquifer and the shallow unconfined aquifer were successfully matched. A satisfactory match of observed conditions was possible with only slight modifications of the hydrogeologic parameters determined by pumping test analysis and based on the conceptual model developed in the first phase of the study. It appears that a continuous aquitard layer separating the Columbia River and the PSA aquifer, with the aquifer receiving recharge through vertical leakage over a large area, is a valid representation of the aquifer system.
2

A finite difference soil-structure interaction study of a section of the Bonneville Navigation Lock buttress diaphragm wall utilizing pressuremeter test results

McCormack, Thomas C. 01 January 1987 (has links)
The P-y curve, used in current practice as an efficient Iine-load vs. soi displacement model for input into the finite difference method of laterally loaded pile analysis, is extended in this study for use with cohesionless soils in diaphragm wall analysis on the Personal Computer with the BMCOL7 program. An analogous W-y curve is proposed, an elastic-plastic model with line-load limits developed from classical earth-pressure theories. A new formula for predicting a horizontal walI modulus for cohesionless soiIs from the pressuremeter modulus is developed for use in predicting the displacements on the W-y curves. The resulting modulus values are shown to yield reasonable displacements values. A new procedure for modeling preloaded tie-back anchors and staged excavation for diaphragm walIs was developed, utiIizing multiple computer runs, updated the W-y curves, and superposition of deflections. These new developments were applied to a parametric study of a deflection-critical section of the new Bonnevilie Nav-Lock Buttress Diaphragm Wall, for which extensive high-quality pressuremeter test results were available. Deflection curves of the wall are presented, showing the effect of variations in anchor preload, walI cracking, anchor slip, at-rest pressure, and soiI modulus. The results indicate that preloading will reduce wall deflections by at least 4-fold, but that wall cracking can potentially double deflections. Safety factors against passive soil failure were determined to be about 5 at anchor preload, and more than 40 after fulI excavation.
3

Cascades Island Lamprey Passage Structure: Evaluating Passage and Migration Following Structure Modifications

Lopez-Johnston, Siena Marie 05 December 2014 (has links)
Pacific lamprey (Entosphenus tridentatus), an endemic species to the Columbia River Basin, U.S.A, has experienced staggering decreases in returns to spawning territories in recent decades. As lamprey are threatened severely by a lack of passage at mainstem dams, lamprey specific passage structures have been designed and constructed to address the problem. The Cascades Island Lamprey Passage Structure (LPS) at Bonneville Dam is the longest and steepest structure of its type, following the addition of an exit pipe which allows lampreys to travel from the tailrace of the dam to the forebay. The intent of this study was to assess lamprey use of the structure and whether the structure hinders lamprey migration to subsequent dams. The study was carried out during the 2013 migration season. The study used three different treatment groups of lampreys released on five dates spanning the migration season (n=75 lamprey). Two of these groups (n=50), with different tagging methods, were released directly into the LPS to assess passage success, travel time, and tagging effect. The third group (n=25) was released into the forebay to test whether the structure impedes migration upstream. Fish were monitored via receiver arrays on the LPS and at dams on the river system. Overall passage efficiency was 74% (37 of 50 used the CI LPS successfully). Mean travel time to navigate the structure was 12 h. Fish size had no significant effect on travel time in the LPS. Water temperature had a significant effect on travel time in the LPS. There was no statistically significant effect of tagging on passage efficiency or travel time. The groups that used the LPS performed slightly better migrating upstream to the next dam than the group that bypassed the structure, but the difference was not significant. The groups that used the LPS traveled to more subsequent dams upstream than did the group that bypassed the LPS. It can be concluded that lamprey passed the structure successfully. Temperature (proxy for seasonality) had an effect on travel time in the LPS; however fish size and tagging had no effect. The LPS does not affect the ability of migrating lampreys to continue migration to subsequent dams. Such findings have important implications for management of lamprey in the region.

Page generated in 0.1151 seconds