• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coherent spaces, Boolean rings and quantum gates

Vourdas, Apostolos 26 July 2016 (has links)
Yes / Coherent spaces spanned by a nite number of coherent states, are introduced. Their coherence properties are studied, using the Dirac contour representation. It is shown that the corresponding projectors resolve the identity, and that they transform into projectors of the same type, under displacement transformations, and also under time evolution. The set of these spaces, with the logical OR and AND operations is a distributive lattice, and with the logical XOR and AND operations is a Boolean ring (Stone's formalism). Applications of this Boolean ring into classical CNOT gates with n-ary variables, and also quantum CNOT gates with coherent states, are discussed.
2

Ideals and Boolean Rings: Some Properties

Hu, Grace Min-Ying Chin 05 1900 (has links)
The purpose of this thesis is to investigate certain properties of rings, ideals, and a special type of ring called a Boolean ring.
3

Circuits, communication and polynomials

Chattopadhyay, Arkadev. January 2008 (has links)
In this thesis, we prove unconditional lower bounds on resources needed to compute explicit functions in the following three models of computation: constant-depth boolean circuits, multivariate polynomials over commutative rings and the 'Number on the Forehead' model of multiparty communication. Apart from using tools from diverse areas, we exploit the rich interplay between these models to make progress on questions arising in the study of each of them. / Boolean circuits are natural computing devices and are ubiquitous in the modern electronic age. We study the limitation of this model when the depth of circuits is fixed, independent of the length of the input. The power of such constant-depth circuits using gates computing modular counting functions remains undetermined, despite intensive efforts for nearly twenty years. We make progress on two fronts: let m be a number having r distinct prime factors none of which divides ℓ. We first show that constant depth circuits employing AND/OR/MODm gates cannot compute efficiently the MAJORITY and MODℓ function on n bits if 'few' MODm gates are allowed, i.e. they need size nW&parl0;1s&parl0;log n&parr0;1/&parl0;r-1&parr0;&parr0; if s MODm gates are allowed in the circuit. Second, we analyze circuits that comprise only MOD m gates, We show that in sub-linear size (and arbitrary depth), they cannot compute AND of n bits. Further, we establish that in that size they can only very poorly approximate MODℓ. / Our first result on circuits is derived by introducing a novel notion of computation of boolean functions by polynomials. The study of degree as a resource in polynomial representation of boolean functions is of much independent interest. Our notion, called the weak generalized representation, generalizes all previously studied notions of computation by polynomials over finite commutative rings. We prove that over the ring Zm , polynomials need Wlogn 1/r-1 degree to represent, in our sense, simple functions like MAJORITY and MODℓ. Using ideas from arguments in communication complexity, we simplify and strengthen the breakthrough work of Bourgain showing that functions computed by o(log n)-degree polynomials over Zm do not even correlate well with MODℓ. / Finally, we study the 'Number on the Forehead' model of multiparty communication that was introduced by Chandra, Furst and Lipton [CFL83]. We obtain fresh insight into this model by studying the class CCk of languages that have constant k-party deterministic communication complexity under every possible partition of input bits among parties. This study is motivated by Szegedy's [Sze93] surprising result that languages in CC2 can all be extremely efficiently recognized by very shallow boolean circuits. In contrast, we show that even CC 3 contains languages of arbitrarily large circuit complexity. On the other hand, we show that the advantage of multiple players over two players is significantly curtailed for computing two simple classes of languages: languages that have a neutral letter and those that are symmetric. / Extending the recent breakthrough works of Sherstov [She07, She08b] for two-party communication, we prove strong lower bounds on multiparty communication complexity of functions. First, we obtain a bound of n O(1) on the k-party randomized communication complexity of a function that is computable by constant-depth circuits using AND/OR gates, when k is a constant. The bound holds as long as protocols are required to have better than inverse exponential (i.e. 2-no1 ) advantage over random guessing. This is strong enough to yield lower bounds on the size of an important class of depth-three circuits: circuits having a MAJORITY gate at its output, a middle layer of gates computing arbitrary symmetric functions and a base layer of arbitrary gates of restricted fan-in. / Second, we obtain nO(1) lower bounds on the k-party randomized (bounded error) communication complexity of the Disjointness function. This resolves a major open question in multiparty communication complexity with applications to proof complexity. Our techniques in obtaining the last two bounds, exploit connections between representation by polynomials over teals of a boolean function and communication complexity of a closely related function.
4

Circuits, communication and polynomials

Chattopadhyay, Arkadev January 2008 (has links)
No description available.
5

Decomposition and optimization in near-hierarchical boolean function systems /

Masum, Hassan, January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2003. / Includes bibliographical references (p. 226-237). Also available in electronic format on the Internet.
6

Boolean Space

Sun, Tzeng-hsiang 01 May 1965 (has links)
M. H. A. Stone showed in 1937 and subsequently that many interesting and important results of general topology involve latices and Boolean rings. This type of result forms the substance of this thesis. Theorem 4, page 11, states that for any r ≠ 0 in a Boolean ring, there exists a homomorphism h into I2 , (the field of integers modulo 2), such that h(r) = 1. Theorem 3, page 6, states that any subring of a characteristic ring of a Boolean space X is the whole ring if it has the two points property (that is, given x, y in X and a, b in I2, there exists a g such that g(x) = a and g(y) = b). From these two theorems follows the Stone Representation theorem which states that any Boolean ring is isomorphic to the characteristic ring of its Stone space. Theorem 1, page 11, is independent of other theorems. It states that any compact Hausdorff space is the continuous image of some closed subset in a Cantor space. Theorem 5, page 23, states that a topological space can be embedded in a Cantor space as a subspace if and only if it is Boolean. This theorem uses the Dual Representation theorem as its sufficient part. It states that any Boolean space is homomorphic to the Stone space of its characteristic ring.

Page generated in 0.0704 seconds