• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Analysis of Four Architectures for FPGA-Based Cellular Computing

Morgan, Kenneth J. 09 November 2004 (has links)
The computational abilities of today's parallel supercomputers are often quite impressive, but these machines can be impractical for some researchers due to prohibitive costs and limited availability. These researchers might be better served by a more personal solution such as a "hardware acceleration" peripheral for a PC. FPGAs are the ideal device for the task: their configurability allows a problem to be translated directly into hardware, and their reconfigurability allows the same chip to be reprogrammed for a different problem. Efficient FPGA computation of parallel problems calls for cellular computing, which uses an array of independent, locally connected processing elements, or cells, that compute a problem in parallel. The architecture of the computing cells determines the performance of the FPGA-based computer in terms of the cell density possible and the speedup over conventional single-processor computation. This thesis presents the design and performance results of four computing-cell architectures. MULTIPLE performs all operations in one cycle, which takes the least amount of time but requires the most chip area. BIT performs all operations bit-serially, which takes a long time but allows a large cell density. The two other architectures, SINGLE and BOOTH, lie within these two extremes of the area/time spectrum. The performance results show that MULTIPLE provides the greatest speedup over common calculation software, but its usefulness is limited by its small cell density. Thus, the best architecture for a particular problem depends on the number of computing cells required. The results also show that with further research, next-generation FPGAs can be expected to accelerate single-processor computations as much as 22,000 times. / Master of Science
2

Efektivní výpočty vícenásobných integrálů / Multiple Integral Effective Computations

Iša, Radek January 2017 (has links)
This thesis deals with the design system for multiple integrals for diferential expression with space variables. Today, integration is one of engineering problems. Reader is acquainted with different method of integration, then with numerican integration and Taylor series. The practical aim of this work is to design software and hardware system of numerican integration multiple integrals.
3

Automatické řízení výpočtu ve specializovaném výpočetním systému / Specialized Computer System Automatic Control

Opálka, Jan January 2016 (has links)
This work deals with the automatic control of calculations of specialized system. The reader is acquainted with the numerical solution of differential equations by Taylor series method and numerical integrators. The practical aim of this work is to analyze parallel characteristics of Taylor series method, specification of parallel math operations and design of control of this operations.

Page generated in 0.0461 seconds