• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Natural variation and short-term impact of aspen harvesting on surface stream chemistry in the Boreal Plains

Palmer, Amy R 06 1900 (has links)
This thesis describes the natural variation and influence of aspen harvesting on stream chemical concentration and flow-weighted export from catchments typical of the Western Boreal Plain, Alberta, Canada. The catchment stream discharge and stream chemical concentrations presented are taken from a subset of a five-year paired catchment (2005-2010) HEAD2 NSERC-CRD study. Nutrients, major anions, major cations and two minor ions were monitored from second-order streams draining a 18.3 sq km reference catchment (R1) and compared to a 9.9 sq km experimental catchment (H1) for two years of pre-harvesting (2005-2006) and two years of sequential harvesting (2007-2008). Preliminary analyses showed that non-harvest high flows had a total average instantaneous export greater than 10 times that of low flows. In addition, summer storms and beaver dam breakages had stream export equivalent to or greater than spring melt. Intensive upland aspen harvesting showed no significant differences in major cation and anion export post-harvest with the exception of increased sulfate. / Ecology
2

Natural variation and short-term impact of aspen harvesting on surface stream chemistry in the Boreal Plains

Palmer, Amy R Unknown Date
No description available.
3

Peatland Carbon Accumulation Following Wildfire on the Boreal Plains: Implications for Peatland Reclamation and Wildfire Management

Ingram, Rebekah January 2018 (has links)
Peatlands in the sub-humid Boreal Plains of Alberta exist at the limit of their climatic tolerance and are vulnerable to wildfire. This is especially true at the interface between the peatland and forestland (margins) due to water table fluctuation resulting in high peat bulk density and low moisture content during dry periods in some peatland systems. Deep burning at the margins may reduce a peatland's ability to recover to its previous state, leading to a reduction in area and/or collapse following fire, and bringing into question the long-term stability of Boreal Plains peatlands on the landscape under current and future climate predictions. Previous research has identified small peatlands located at a mid-topographic position on coarse sediments as hotspots for deep burning, as these peatlands are not regularly connected to regional groundwater flow. The ability of these peatland systems to recover lost carbon from both the interior and margin within the fire return interval, however, has not yet been investigated. This thesis further examines the relationship between surficial sediment assemblages and the impact of wildfire on overlying peatlands through assessment of organic soil carbon accumulation following wildfire across the Boreal Plains landscape. Peatland organic soil recovery along a chronosequence was assessed in the interior and margin of 26 ombrotrophic bogs located at various positions on the post-glaciation landscape of Northern Alberta using estimates of organic soil carbon accumulation calculated through loss on ignition of peat above the uppermost charcoal layer in peat cores from each site, as well as characterization of peat properties along a transect from the adjacent forestland into the peatland interior. Soil organic carbon accumulation with time since fire was greater in studied peatland interiors than margins. Underlying sediments were found to have little effect on total soil organic carbon accumulation in the interior and margins of the studied peatlands, indicating that organic soil carbon accumulation rates following wildfire estimated in this study can be extended to ombrotrophic bogs across the Boreal Plains landscape. Though total soil organic carbon accumulation following wildfire does not appear to be influenced by hydrogeological setting, the ability of a peatland to recover the quantity of carbon lost within the fire return interval will be dependent on the amount of carbon which was released through smouldering, which is influenced by hydrogeological setting for peatland margins. Based on published measurements of organic soil carbon loss during wildfire and organic soil carbon accumulation rates estimated in this thesis, peatlands located at topographic lows on coarse grained glaciofluvial outwash sediments or on low-relief, fine grained sediment deposits from glaciolacustrine or subglacial paleoenvironments are predicted to be resilient to wildfire on the Boreal Plains landscape. Peatlands which experience severe smouldering at the margins, such as ephemerally perched systems on glaciofluvial outwash sediments, will likely undergo permanent loss of legacy carbon stores. The resilience of peatlands which are perched above regional groundwater on glaciofluvial outwash or stagnant ice moraine deposits is unknown at this time; further investigation into water table dynamics, margin peat properties, and smouldering depths in these systems is required. Identification of peatland systems which are at risk of permanent carbon loss at the margins and those which are most resilient to wildfire in this thesis can be applied to wildfire management strategies and the design of peatland systems for reclamation of oil sands leases. The stability of natural and created peatlands through time on a landscape where wildfire is frequent is an important consideration in terms of both lasting ecosystem services and the potential risk to fire suppression and community safety that vulnerable systems pose. / Thesis / Master of Science (MSc)

Page generated in 0.051 seconds