• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Site index curve and table for trembling aspen in the boreal white and black spruce zone of British Columbia

Klinka, Karel, Chen, Han Y. H., Chourmouzis, Christine January 1997 (has links)
No description available.
2

Trembling aspen site index in relation to site quality in northern British Columbia

Klinka, Karel, Chen, Han Y. H., Chourmouzis, Christine January 1998 (has links)
Accurate and reliable predictions of site index (height of dominant trees at a reference age, usually 50 years at breast-height) for timber crop species is essential for silvicultural site-specific decision making. Site index can be predicted from site quality once the relationship between site index and site quality has been quantified. Site quality is defined as the sum of all environmental factors affecting the biotic community, such as the factors directly influencing the growth of vascular plants (light, heat, soil moisture, soil nutrients, and soil aeration). Since these factors vary greatly in time, indirect estimates of site quality have widely been used as predictors for site index in various multiple regression models. Trembling aspen (Populus tremuloides Michx.) is the most widely distributed broadleaf species in British Columbia, especially in the Boreal White and Black Spruce (BWBS) biogeoclimatic zone. Growing this species for sustainable timber production requires a good understanding of its productivity attributes and accurate predictions of its growth. This extension note presents (1) relationships between trembling aspen site index and some indirect measures of site quality, and (2) site index prediction models using the indirect measures of site quality as predictors.
3

Species diversity and floristic relationships of the understory vegetation in black spruce and trembling aspen stands in the boreal forest of British Columbia

Klinka, Karel, Qian, H., Krestov, Pavel, Chourmouzis, Christine January 2001 (has links)
The boreal forest is confined to the Northern Hemisphere and is the most continuous and extensive forest in the world. In North America boreal forest extends from the Pacific to Atlantic coast spanning over 10° latitude. White spruce (Picea glauca (Moench) Voss), black spruce (P. mariana (Mill.) B.S.P.), and trembling aspen (Populus tremuloides Michx.) are among the dominant tree species. Black spruce and trembling aspen may form pure stands and occupy similar sites as their edaphic amplitudes overlap; however, spruce is rare on water-deficient sites and aspen does not tolerate excess water. Despite many studies conducted in the North American boreal forest, little is known about relationships between the boreal understory vegetation and softwood or hardwood canopy species in different climate regions. Furthermore, the variation in species diversity and succession between the stands dominated by coniferous trees and those dominated by broadleaved trees within the same region is unknown. The objectives of this study are to determine (1) the difference in the species diversity and floristic composition of understory vegetation between black spruce and trembling aspen stands within the same climatic region, and (2) how the species diversity and floristic composition of understory vegetation in each stand type vary with climate, and soil moisture and soil nutrient conditions.

Page generated in 0.4471 seconds