• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 22
  • 22
  • 19
  • 18
  • 18
  • 13
  • 11
  • 11
  • 9
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simplified Dynamic Boundary Conditions for Numerical Models of Borehole Heat Exchangers

Holmes, Andrew January 2022 (has links)
This work describes the development and validation of a computational model for vertical borehole heat exchangers in residential ground-source heat pump energy systems. Due to the size and shape of vertical borehole heat exchangers, their operation thermally impacts a large volume of surrounding soil and thus discretized models have largely been confined to short-term transient simulations, such as the case of a thermal response test. The proposed model employs a computationally efficient physics-based models at variable spatial dimensions which can be used for long-time simulation of the ground heat transfer. The model can generally be considered as a composition of three separate domains: the borehole domain, which combines one-dimensional, three-dimensional and equations-based physics, the near-field soil domain, which resolves three-dimensional transient heat conduction and the far-field soil domain which is modelled as one-dimensional axisymmetric transient heat conduction. The main purpose of this work is to present each component of the model and validate their behaviours and assumptions through a combination of comparison to experimental data, highly cited published works, and well-known analytical models. The complete composite model ignores the three-dimensional effects of fluid heat transfer, and the axial heat transfer in the far-field in order to reduce the computational effort, and the level of uncertainty introduced by each simplification is explored. Finally, to support the composite model, a new method determining the thermal impact of the borehole operation mentioned previously was devised and presented alongside the model development and validations. This method, based on the previously defined thermal impacting radius, improves the consistency and theoretical foundation of the value’s definition based on a system energy balance, rather than local temperature conditions. / Thesis / Master of Applied Science (MASc)
2

Numerical modelling of geothermal borehole heat exchanger systems

He, Miaomiao January 2012 (has links)
The large proportion of energy used in the built environment has made improving energy efficiency in buildings, in particular their heating, ventilation, and air conditioning (HVAC) systems, a policy objective for reducing energy consumption and CO2 emissions nationally and internationally. Ground source heat pump (GSHP) systems, due to their high coefficient of performance (COP) and low CO2 emissions are consequently, receiving increasing attention. This work is concerned with the modelling of borehole heat exchangers (BHEs), the commonest form of ground heat exchangers found in GSHP systems. Their careful design is critical to both the short timescale and long timescale performance of geothermal heat pump systems. Unlike conventional components of HVAC systems, BHEs cannot be designed on the basis of peak load data but require 3 application of dynamic thermal models that are able to take account of the heat transfer inside the borehole as well as the surrounding ground. The finite volume method has been applied to develop a dynamic three-dimensional (3D) model for a single BHE and BHE arrays. The multi-block boundary fitted structured mesh used in this model allows the complex geometries around the pipes in BHEs and the surrounding ground around the borehole to be represented exactly. The transport of the fluid circulating along the pipe loop has been simulated explicitly in this model. The ground underneath the borehole has also been represented in this model. Validation of the 3D model has been carried out by reference to analytical models of borehole thermal resistance and fluid transport in pipes, as well as experimental data. In this work, the 3D numerical model has been applied to investigate the three-dimensional characteristics of heat transfer in and around a BHE at both short and long timescales. By implementing a two-dimensional (2D) model using the same numerical method and comparing the simulation results from the 3D and 2D models, the most significant three-dimensional effects have been identified and quantified. The findings have highlighted some of the limitations of 2D models, and based on the findings, methods to improve the accuracy of a 2D model have been suggested and validated. Furthermore, the 3D and 2D finite volume models have been applied to simulate an integrated GSHP system and their effects on overall system performance predictions have been investigated. The 3D numerical model has also been applied to examine thermal interactions within BHE arrays and to evaluate the assumptions of the line source model and their implications in the analysis of thermal response test data.
3

Geoenergi med och utan värmepump / Geothermal heating with and without using a heat pump

Burlin, Jesper January 2017 (has links)
Detta examensarbete utfördes på uppdrag av Umeå Kommun. Uppgiften bestod av att utvärdera dagens användning av en borrhålsbrunn samt undersöka vad som är det optimala användningsområdet för borrhålsbrunnen. Borrhålsbrunnen används i dagsläget för att förvärma samt kyla utomhusluft in till kontorsbyggnaden Kubens ventilationsaggregat. Ventilationens förvärmning består av två delar, en markkanal och ett geoenergibatteri. Viktiga parametrar hos förvärmningen analyserades med hjälp av mätvärden för temperatur och flöde. Resultaten jämfördes därefter med alternativet att använda borrhålsbrunnen tillsammans med en värmepump. Då borrhålsbrunnens kapacitet inte var tillräcklig för att klara byggnadens hela uppvärmningsbehov, undersöktes det hur en värmepump skulle kunna köras i kombination med fjärrvärme. Två driftstrategier, Bas och Kapatoppar, undersöktes. Bas leverar en basproduktion under hela vinterperioden medan Kapatoppar startar vid -6°C för att sänka effekttoppar. Utvärderingen av förvärmningen visade att geoenergibatteriet är mer kompatibelt med ventilationsaggregat av VAV-typ (Variable Air Volume) än vad markkanalen är. Däremot är inte förvärmning i kombination med roterande värmeväxlare ett bra koncept för byggnaden som den används idag. På grund av att förvärmningen är placerad före den roterande värmeväxlaren så är bara 15-20 % av förvärmningseffekterna energibesparande. Detta kombinerat med en optimerad drift av aggregatet sett till tidsstyrning och behovsstyrning av flöde gör att förvärmningen har en liten påverkan både på byggnadens maximala effektbehov och totala energibehov. Att köra värmepump i kombination med fjärrvärme för uppvärmning var ekonomiskt lönsamt främst på grund av att värmepumpen kunde kapa byggnadens effektoppar. Kostnaden för storleken på den abonnerade effekten uppgår idag till drygt 40 % av den totala fjärrvärmekostnaden. Dagens relation mellan el- och fjärrvärmepriser bidrog naturligtvis också till att värmepumpsalternativet var lönsamt. För de undersökta förutsättningarna så blev paybacktiden för en värmepump med den lönsammaste driftstrategin, Bas, 4,4 år.
4

Sensitivity Analysis and Optimization of the Vertical GSHP (Ground source heat pump)

Ramanathan, Sriram January 2020 (has links)
GSHP (Ground source heat pump), uses geothermal energy which is a form of green and sustainable energy.  Geothermal energy is also a continuous source of energy, unlike wind energy. The results from this thesis work will be applicable for both GSHP that are being used for space heating, and the ones which have a bottom organic Rankine cycle. The bottom organic Rankine cycle and continuous energy production of GSHP make it a potential source for electricity generation.  The GSHP is of various types, in regard to the configuration of the pipe and their setup in the ground and also based on their grouting. In this study only vertical GSHP and with a single u-tube and water filled grout will be analyzed. The GSHP performance is based on a number of parameters including, the depth of the heat exchanging unit in the ground, other key dimensions of the unit like diameter and outer wall thickness, the fluid flow, and the type of working fluid. Therefore it becomes necessary to study the effect of all of these parameters individually and their individual effect on the energy output and the performance of the BHE. One of the thesis objectives is to establish a sensitivity analysis of the BHE based on the above mention parameters and then further optimize the design with the heat enhancement devices. The major findings of this thesis work are how shank spacing (spacing between the inlet and the outlet pipe) affects the heat transfer in the BHE. The shank spacing seems to reduce the energy output of the GSHP, this is contrary to the high conductive solid grout, where the shank spacing doesn't affect the BHE so much. The diameter of the BHE in the water-filled grout has a completely opposite effect from the solid grout. Increasing the depth of the BHE after a certain length only increases the entropy of the system which reduces the energy output. The working fluid with a higher Prandtl number helps in higher energy output. The optimization results suggest that having a deeper borehole is not very energy efficient in spite of the greater thermal gradient available at a higher depth.
5

Analysis of a novel CBHE

GUILLAUME, François January 2011 (has links)
No description available.
6

Numerical Modelling of Multiple Inclined Borehole Heat Exchangers / Numerical Modelling of Multiple Angled Borehole Heat Exchangers

Deacon, Daniel January 2023 (has links)
This research describes the development and application of a numerical modelling method for angled borehole heat exchangers in ground-source heat pump systems. Inclining the boreholes relative to the vertical axis presents an opportunity to reduce the ground level footprint of the borehole field thus allowing for the installation of geothermal systems in retrofit applications or under buildings with small footprints. The commercial code COMSOL was used to develop the computational model. A series of validation and verification studies were performed to ensure the accuracy of the modelling approach. Simulations were conducted under constant and transient heat injection, where the effect of energy load imbalance is analyzed. Additionally, the effect of discontinuous loading with natural and forced recovery cycles is investigated. When exposed to a constant heat injection rate, configurations of angled borehole heat exchangers initially perform the same as vertical borehole heat exchangers. Then, there is a relatively short period where the angled configurations have slightly decreased performance due to increased thermal interaction in the near surface. At longer times, however, there is a significant benefit in using angled borehole heat exchangers as a result of the increased ground volume in the lower portion of the field. Under transient loading conditions, the conclusions were the same as constant heat injection, although the differences were smaller when the energy loading was balanced. However, when the loading was cooling dominated, by year 10 there was a significantly better performance observed for the angled boreholes. This indicates that the configurations of angled borehole heat exchangers can withstand a higher intensity of imbalanced energy loads compared to vertical configurations. Discontinuous loading was investigated by varying the length of time heat injection would occur on a daily basis. These daily perturbations led to small performance losses in the angled boreholes due to the increased thermal interaction in the near surface. Furthermore, imposing a forced recovery on the system by circulating fluid while heat injection was off did not significantly affect the fluid temperature or ground temperature. / Thesis / Master of Applied Science (MASc)
7

MODELLING AND EXPERIMENTAL VALIDATION OF AN INNOVATIVE COAXIAL HELICAL BOREHOLE HEAT EXCHANGER FOR A DUAL SOURCE HEAT PUMP SYSTEM

Cazorla Marín, Antonio 02 September 2019 (has links)
[ES] La energía geotérmica de baja entalpía es una alternativa eficiente y renovable a los sistemas convencionales para proporcionar calefacción, refrigeración y producir agua caliente sanitaria (ACS) de forma sostenible. El proyecto GEOTeCH plantea el desarrollo de sistemas con bomba de calor geotérmica más eficientes y con un coste menor en comparación con el mercado. Para ello, se ha desarrollado un nuevo tipo de intercambiador enterrado coaxial con flujo helicoidal en el tubo externo que presenta una mayor eficiencia y permite reducir la longitud de intercambiador a instalar, así como una bomba de calor dual con compresor de velocidad variable, capaz de trabajar con el terreno o el aire como fuente/sumidero, seleccionando la que proporcione un mejor rendimiento del sistema. El principal objetivo es desarrollar un sistema eficiente y replicable para proporcionar calefacción, refrigeración y producir ACS en el sector de mercado de pequeños edificios con un tamaño menor en el campo de intercambiadores enterrados y un aumento de la eficiencia. Para demostrar la aplicabilidad de estos sistemas, se han construido tres instalaciones demostración en tres países europeos. En esta tesis doctoral se ha desarrollado un modelo dinámico completo del sistema en el software TRNSYS, capaz de reproducir el comportamiento de los diferentes componentes y del sistema en general. Este modelo constituye una herramienta útil para el desarrollo y análisis de diferentes estrategias de control sin la necesidad de implementarlas en instalaciones reales, así como analizar el comportamiento del sistema funcionando bajo condiciones diferentes. Para este propósito, es necesario desarrollar modelos detallados de los nuevos componentes desarrollados en el proyecto: el intercambiador enterrado coaxial helicoidal y la bomba de calor dual; para poder acoplarlos al resto de componentes en el modelo completo del sistema. Por ello, se ha desarrollado un modelo dinámico del nuevo intercambiador, capaz de reproducir con precisión el comportamiento a corto plazo del intercambiador, enfocado a la evolución de la temperatura del fluido, y se ha validado con datos experimentales en diferentes condiciones de operación. Para poder reproducir no solo el comportamiento dinámico del intercambiador enterrado, sino también la respuesta a largo plazo del terreno y la interacción entre intercambiadores en un campo, se ha desarrollado otro modelo en TRNSYS que realiza esta función. De esta manera, al acoplar ambos modelos es posible reproducir el comportamiento a corto plazo del intercambiador enterrado a la vez que la respuesta a largo plazo del terreno. Por otro lado, se ha implementado en TRNSYS un modelo de la bomba de calor dual desarrollado. Con este modelo es posible calcular la capacidad de la bomba de calor dependiendo del modo de operación en que esté funcionando, de la frecuencia del compresor y otras variables y condiciones de operación. El modelo del sistema dual en TRNSYS se ha utilizado para hacer un análisis de su comportamiento funcionando en diferentes climas, para ello se han seleccionado tres ciudades en España y en Europa con diferentes climas y se han realizado simulaciones del sistema funcionando en cada ciudad. Por otro lado, también se ha modelado en TRNSYS una de las instalaciones demostración del proyecto GEOTeCH, incluyendo el edificio climatizado y el acoplamiento con los fan coils. Con este modelo se estudia una nueva estrategia para controlar la frecuencia del compresor en base a la temperatura de las habitaciones, en lugar de controlarla en base a la temperatura de suministro, con el objetivo de reducir el consumo del compresor cuando ya se haya conseguido el confort. Además, otras estrategias de optimización se han analizado con el modelo.Por tanto, los modelos desarrollados constituyen herramientas útiles para ayudar en el diseño del sistema y los diferentes componentes, el análisis de su comportamiento y el d / [CA] L'energia geotèrmica de baixa entalpia es planteja com una alternativa eficient i renovable als sistemes convencionals per proporcionar calefacció, refrigeració i produir aigua calenta sanitària (ACS) de forma sostenible. El projecte GEOTeCH planteja el desenvolupament de sistemes amb bomba de calor geotèrmica més eficients i amb un cost menor en comparació amb el mercat. Per a això, s'ha desenvolupat un nou tipus d'intercanviador enterrat coaxial amb flux helicoïdal en el tub extern que presenta una major eficiència i permet reduir la longitud a instal·lar, així com una bomba de calor dual amb compressor de velocitat variable, capaç de treballar amb el terreny o l'aire com a font, seleccionant la que proporcione un millor rendiment. Aquests components s'utilitzen en el nou sistema amb bomba de calor dual. El principal objectiu és desenvolupar un sistema eficient i replicable per proporcionar calefacció, refrigeració i produir ACS en edificis xicotets amb una grandària menor d'intercanviadors soterrats i un augment de l'eficiència. Per demostrar l'aplicabilitat d'aquests sistemes, s'han construït tres instal·lacions demostració en Itàlia, Països Baixos i Regne Unit. En aquesta tesi s'ha desenvolupat un model dinàmic complet del sistema en TRNSYS, capaç de reproduir el comportament dels components i del sistema en general. Aquest model constitueix una eina útil per al desenvolupament i anàlisi de diferents estratègies de control sense la necessitat d'implementar-les en instal·lacions reals, així com analitzar el comportament del sistema funcionant en condicions diferents. Per a això, cal desenvolupar models detallats dels nous components desenvolupats en el projecte: l'intercanviador enterrat i la bomba de calor dual; per poder acoblar-los a la resta de components. Per això, s'ha desenvolupat un model dinàmic del nou intercanviador enterrat, capaç de reproduir amb precisió el comportament a curt termini de l'intercanviador, enfocat a l'evolució de la temperatura del fluid, i s'ha validat amb dades experimentals en diferents condicions d'operació. Per a poder reproduir no només el comportament dinàmic de l'intercanviador soterrat, sinó també la resposta a llarg termini del terreny i la interacció entre intercanviadors en un camp, s'ha desenvolupat un altre model en TRNSYS que realitza aquesta funció. D'aquesta manera, en acoblar els dos models és possible reproduir el comportament a curt termini de l'intercanviador enterrat, al mateix temps que la resposta a llarg termini del terreny. D'altra banda, s'ha implementat en TRNSYS un model de la bomba de calor. Amb aquest model és possible calcular la capacitat de la bomba de calor depenent del mode d'operació en què estiga funcionant, de la freqüència del compressor i altres variables i condicions d'operació. El model del sistema dual en TRNSYS s'ha utilitzat per a fer una anàlisi del seu comportament funcionant en diferents climes, per a això s'han seleccionat tres ciutats a Espanya i tres a Europa amb diferents climes i s'han realitzat simulacions del sistema funcionant en cada ciutat durant un any. S'ha analitzat l'eficiència del sistema en cada ciutat, així com l'ús de cadascuna de les fonts (aire / terreny). D'altra banda, també s'ha modelat en TRNSYS una de les instal·lacions demostració del projecte GEOTeCH, incloent l'edifici d'oficines climatitzat i l'acoblament amb els fan coils. Amb aquest model es pretén estudiar una nova estratègia per a controlar la freqüència del compressor d'acord amb la temperatura de les habitacions, en lloc de controlar-la en base a la temperatura de subministrament, amb l'objectiu de reduir el consum del compressor quan les habitacions ja es troben en condicions de confort. A més, altres estratègies d'optimització s'han analitzat amb el model. Per tant, els models desenvolupats constitueixen eines útils per ajudar en el disseny del sistema i els diferents components, l'anàlisi del / [EN] Low enthalpy geothermal energy is considered as an efficient and renewable alternative to conventional systems to provide heating, cooling and Domestic Hot Water (DHW) production in a sustainable way. In this context, the GEOTeCH project proposes the development of more efficient geothermal heat pump systems with a lower cost compared to the market. To this end, a new type of coaxial Borehole Heat Exchanger (BHE) with helical flow through the outer tube has been developed, which presents a higher efficiency and allows to reduce the length of the heat exchanger to be installed, as well as a Dual Source Heat Pump (DSHP) with variable speed compressor, capable of working with the ground or air as a source / sink, selecting the one that provides the best performance of the system. These components are used in the new DSHP system developed. The main objective is to develop efficient and replicable systems to provide heating, cooling and DHW in the market sector of small buildings with a smaller size of the BHE field and an increase in the efficiency. To demonstrate the applicability of these systems, three demonstration facilities have been installed in Italy, the Netherlands and the UK. In this thesis, a complete dynamic model of the system has been developed in the TRNSYS software, capable of reproducing the behavior of the different components and the system in general. This model is a useful tool for the development and analysis of different control strategies without the need to implement them in real installations, as well as analyses the behavior of the system operating under different conditions. For this purpose, it is necessary to develop detailed models of the new components developed in the project: the BHE and the DSHP; to couple them to the rest of the components of the system. For this reason, a dynamic model of the new BHE was developed, able to accurately reproduce its short-term behavior, focused on the evolution of the fluid temperature, and validated with experimental data in different operating conditions. In order to reproduce not only the dynamic behavior of the BHE, but also the long-term response of the ground and the interaction between BHEs in a field, another model was developed in TRNSYS. In this way, by coupling both models, it is possible to reproduce the short-term behavior of the BHE as well as the long-term response of the ground. On the other hand, a model of the DSHP was implemented in TRNSYS. With this model, it is possible to calculate the capacity of the heat pump depending on the operating mode in which it is operating, the frequency of the compressor and other variables and operating conditions. The model of the hybrid system in TRNSYS has been used to make an analysis of its behavior working in different climatic conditions, for which three cities have been selected in Spain and three in Europe, with different climates. So, different simulations of the system have been carried out in each city for one year. The efficiency of the system in each city has been analyzed, as well as the use of each of the sources (air / ground). On the other hand, one of the demo-sites of the GEOTeCH project, including the conditioned office building and the coupling with the fan coils, has also been modelled in TRNSYS. With this model, it is studied a new strategy to control the frequency of the compressor based on the temperature of the rooms, instead of controlling it based on the supply temperature, with the aim of reducing the consumption of the compressor when the rooms are already in comfort conditions. In addition, other optimization strategies have been analyzed with the model. Therefore, the models developed, both for the BHE and the system, are able to reproduce their operation and can be used as virtual installations, constituting useful tools to help in the design of the system and the different components, the analysis of their behavior and the development of optimization strategies. / I would like to acknowledge the financial support that has made this PhD thesis possible. The present work has been supported by the European Community Horizon 2020 Program for European Research and Technological Development (2014-2020) inside the framework of the project 656889 – GEOTeCH (Geothermal Technology for Economic Cooling and Heating), also by the Generalitat Valenciana inside the program “Ayudas para la contratación de personal investigador en formación de carácter predoctoral (ACIF/2016/131)” and by the Institute for Energy Engineering of the Universitat Politècnica de València. / Cazorla Marín, A. (2019). MODELLING AND EXPERIMENTAL VALIDATION OF AN INNOVATIVE COAXIAL HELICAL BOREHOLE HEAT EXCHANGER FOR A DUAL SOURCE HEAT PUMP SYSTEM [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/125696
8

Practical evaluation of borehole heat exchanger models in TRNSYS

Thorén, Åsa January 2016 (has links)
Vertical ground source heat pumps are established and still growing on the global market. The modelling of these systems is important for system design and optimization. This is an active field of research, and many models are often built into system simulation software such as TRNSYS. With the intention of having a better sensibility for existing TRNSYS tools, three different cases are simulated with several TRNSYS tools, so called Types. A Thermal Response Test, a large borehole field of an IKEA building complex in Sweden, as well as the Marine Corps Logistic Base in Albany, USA. The vertical ground heat exchanger types 203, 244, 243, 246, 451, 55a and 557b are used. Most of the simulations are investigated and evaluated by comparing them to measured data. The result shows that, for these specific cases, the DTS types 557a and 557b can underestimate the heat transfer early on due to a poor consideration of the thermal capacity inside the borehole. Depending on how the thermal resistance is calculated by a module, the fluid mean temperature simulation is affected by a constant throughout the simulation time. The simulation results indicate that the type 557b, where the borehole resistance is pre-set as an input and known from experimental data, is the most accurate of the types for groundwater filled boreholes. On short term, type 451 provides a good coherence with the measured data, with a relative deviation of 10.3 %. The borehole models that consider the borehole thermal capacity overestimate the short term heat transfer rate, whereas those that neglect the borehole capacity underestimate the short term thermal heat transfer on short term. Existing Types describe successfully the long term behaviour of large borehole fields. Serial versus parallel coupled BHE fields show relatively small differences in performance when simulated with type 557b for a specific study case.
9

Numerical models and simulations of geothermal heat exchangers

Righi, Alexandro January 2013 (has links)
No description available.
10

Technical and Economical Analysis of Ground Source Heat Pump Systems with BHE in Poland

Wajman, Michal January 2011 (has links)
Nowadays, Ground Source Heat Pumps (GSHPs) are more frequently acting as a main or the only device covering the building heat/cool demand. The most efficient way to extract/dissipate the low-temperature heat from/to the ground is by means of Borehole Heat Exchanger (BHE). In this Master of Science Thesis various aspects related to this technology are studied, focused on summarizing the possibilities of installing this tech-nology in Poland. Borehole drilling methods used in Poland and Sweden are analyzed and the most proper and economical ones according to Polish geological structure are proposed. Approximately for 80 % of Poland the ground should be penetrated with Mud Rotary Drilling, while for the rest 20 % DTH Air or Water driven hammer should be used. Solutions of Thermal Insulated Leg (TIL) Borehole Heat Exchanger cooperation with mechanical ventilation system are proposed and simple preliminary estimations show higher Coefficient of Performance (COP) in comparison to normal, common situation, where standard U-pipe BHE works. The possibility of using a new product (Energy Capsule - EC) in Polish conditions is surveyed, found hard to prosper at Polish market according to its high costs. Profitability of Ground Source Heat Pumps with Borehole Heat Exchanger in different geological regions of Poland is investigated. After conducted simulations it occurred that Polish lowland regions are cheaper in exploita-tion, while uplands regions are less expensive at investment level. Finally, the most ef-ficient BHE conception from those currently available at market as well as recently in-vented is suggested. Annular coaxial BHE in a form of Energy Capsule seems to be the most beneficial from all designs taken into account during performed simulations because of its low price and good thermal properties.

Page generated in 0.0989 seconds