• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 35
  • 22
  • 22
  • 19
  • 18
  • 18
  • 13
  • 11
  • 11
  • 9
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Numerical modelling of multiple borehole heat exchanger array for sustainable utilisation of shallow geothermal energy

Chen, Shuang 24 August 2022 (has links)
A PhD dissertation which presented a numerical modelling study on the long-term behavior in the multiple borehole heat exchanger array system for sustainable utilisation of shallow geothermal energy.
32

Optimalizace chlazení RD využívajícího zemní vrty / Optimization of cooling of a family house by using a geothermal system

Buchta, Jan January 2015 (has links)
The master’s thesis deals with optimization of cooling system of family house using borehole heat exchanger as a single cooling source. In the experimental part of the thesis was carried out long-term mearurements. The main part of the master’s thesis is the development and verification mathematical and physical model of thermal behavior chilled room. The result are computer simulations and evaluation of individual scenarios and design requirements for a potential optimization of measurement and control system. The theoretical part generally deals with radiant cooling systems.
33

Temperaturzoner för lagring av värmeenergi i cirkulärt borrhålsfält / Temperature stratification of borehole thermal energy storages

Penttilä, Jens January 2013 (has links)
The thermal response of a borehole field is often described by non‐dimensional response factors called gfunctions.The g‐function was firstly generated as a numerical solution based on SBM (Superposition BoreholeModel). An analytical approach, the FLS (Finite Line Source), is also accepted for generating the g‐function. In thiswork the potential to numerically produce g‐functions is studied for circular borehole fields using the commercialsoftware COMSOL. The numerical method is flexible and allows the generation of g‐functions for any boreholefield geometry. The approach is partially validated by comparing the solution for a square borehole field containing36 boreholes (6x6) with g‐functions generated with the FLS approach and with the program EED (Earth EnergyDesigner). The latter is based on Eskilsons SBM, one of the first documents where the concept of g‐functions wasintroduced. Once the approach is validated, the square COMSOL model is compared with a circular geometryborehole field developed by the same method, consisting of 3 concentric rings having 6, 12, and 18 boreholes.Finally the influence on the circular geometry g‐function is studied when connecting the boreholes in radial zoneswith different thermal loads. / Den termiska responsen för ett borrhålsfält beskrivs ofta med den dimensionslösa responsfunktionen kallad gfunktion.Responsfunktionen togs först fram som en numerisk lösning med SBM (Superposition Borehole Model).En analytisk metod, FLS (Finite Line Source) är också accepterad för framtagandet av g‐funktioner. I det här arbetetundersöks förutsättningarna att numeriskt ta fram g‐funktioner för cirkulära borrhålsfält genom att använda detkommersiella simuleringsprogrammet COMSOL Multiphysics. Den numeriska metoden är flexibel och kananvändas för alla typer av borrhålsgeometrier. Metoden att använda COMSOL valideras delvis genom att jämföraresultatet för ett kvadratiskt borrhålsfält innehållande 36 borrhål (6x6) med lösningar framtagna med FLS och meddimensioneringsprogrammet EED (Earth Energy Designer). Det senare har sin grund i Eskilsons SBM, ett av deförsta arbeten där begreppet g‐funktion introducerades. När metoden att använda COMSOL verifierats, jämförsden kvadratiska borrhålsmodellen med en cirkulär borrhålskonfiguration, upprättad med samma metod,innehållande 3 koncentriska ringar om vardera 6, 12, 18 borrhål. Slutligen undersöks hur den termiska responsenpåverkas då borrhålen i ett cirkulärt borrhålsfält kopplas samman och grupperas i radiella zoner med olika termiskalaster. / SEEC Scandinavian Energy Efficiency Co.
34

Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES)

Javadi, Hossein 23 March 2024 (has links)
Tesis por compendio / [ES] El sistema de bomba de calor geotérmica (GSHP) es una tecnología prometedora para utilizar la energía geotérmica somera (EGS). En este sistema, un intercambiador enterrado de calor de perforación (BHE) desempeña un papel principal e influye directamente en el coeficiente de rendimiento estacional (SCOP) de este sistema geotérmico poco profundo. Se han llevado a cabo diferentes estudios para mejorar el rendimiento del BHE, incluyendo el uso de materiales avanzados para el plástico de las tuberías, uso de fluido caloportador (o de transferencia de calor) y de relleno/grouting, de mayor transferencia de calor, diseño de nuevas geometrías, y la optimización del BHE para ser utilizado como sistemas de almacenamiento de energía térmica (BTES). Los costes de perforación, el consumo eléctrico de las bombas de calor y la resistencia térmica de las perforaciones pueden reducirse utilizando materiales con propiedades termofísicas adecuadas, como los nanofluidos y los materiales de almacenamiento térmico. De este modo, no sólo se produce una transferencia de calor más significativa entre el fluido caloportador, el relleno y el terreno, sino que también se reduce el efecto térmico sobre el entorno. El fluido de transferencia de calor es uno de los factores de optimización de la BHE que se utilizará para el almacenamiento de energía térmica (TES). Una mayor conductividad térmica en el fluido de transferencia de calor mejora la eficacia de la transferencia de calor entre el fluido y los materiales alrededor, lo que lleva a alcanzar con mayor rapidez la temperatura de cambio de fase en los materiales de almacenamiento. Cuando se usa un fluido de transferencia de calor con una conductividad térmica superior, la temperatura del material de almacenamiento de calor experimenta fluctuaciones más rápidas, lo que reduce significativamente la duración necesaria para un cambio de fase completo. Además, usar materiales de cambio de fase (PCM) para almacenar calor en lugar del relleno convencional permite aprovechar el BHE como sistema BTES. Además de disminuir considerablemente la profundidad de perforación necesaria, el sistema BTES puede almacenar y liberar energía diaria y estacionalmente para reducir la carga durante las horas punta. Sin embargo, hay un vacío notable en la bibliografía sobre la exploración y aplicación de nuevos materiales de almacenamiento de calor y fluidos de transferencia de calor en las BHE para hacerlas aptas para fines de BTES. Aunque se han aplicado diversas innovaciones para mejorar el rendimiento de los BHE, como el uso de materiales plásticos avanzados y la optimización del diseño, la mayor parte de la investigación se ha centrado en el uso convencional de los BHE. Debería prestarse más atención a las ventajas potenciales del aprovechamiento de los intercambiadores de calor mediante la aplicación de nanofluidos y PCM como fluidos de transferencia de calor y medios de almacenamiento de calor, respectivamente. Como ya se ha mencionado, estos materiales poseen propiedades termofísicas superiores que pueden dar lugar a una transferencia de calor más eficiente, una reducción de los costes de perforación, un menor consumo de electricidad en las bombas de calor y una disminución de la resistencia térmica de la perforación. Esta laguna en la investigación hace necesaria una investigación en profundidad para determinar la viabilidad y factibilidad de la aplicación de estos materiales avanzados en las BHE, facilitando en última instancia su transformación en sistemas BTES fiables. Por lo tanto, los principales objetivos de esta tesis doctoral son estudiar experimental y numéricamente los impactos del uso de materiales avanzados para el fluido caloportador y el relleno/grouting tales como nanofluidos y PCMs, en el rendimiento del BHE como sistemas BTES. El estudio pretende seleccionar los materiales más favorables, convirtiéndose en una referencia práctica y fiable para futuros proyectos y sectores industriales. / [CA] El sistema de bomba de calor geotèrmica (GSHP, en anglès) és una tecnologia prometedora per a utilitzar l'energia geotèrmica succinta (EGS). En este sistema, un bescanviador enterrat de calor de perforació (BHE, en anglès) exercix un paper principal i influïx directament en el coeficient de rendiment estacional (SCOP) d'este sistema geotèrmic poc profund. S'han dut a terme diferents estudis per a millorar el rendiment del *BHE, incloent-hi l'ús de materials avançats per al plàstic de les canonades, ús de fluid termòfor (o de transferència de calor) i de grouting, de major transferència de calor, disseny de noves geometries, i l'optimització del BHE per a ser utilitzat com a sistemes d'emmagatzematge d'energia tèrmica (BTES, en anglès). Els costos de perforació, el consum elèctric de les bombes de calor i la resistència tèrmica de les perforacions poden reduir-se utilitzant materials amb propietats termo-físiques adequades, com els nanofluids i els materials d'emmagatzematge tèrmic. D'esta manera, no sols es produïx una transferència de calor més significativa entre el fluid termòfor, el farciment i el terreny, sinó que també es reduïx l'efecte tèrmic sobre l'entorn. El fluid de transferència de calor és un dels factors d'optimització de la *BHE que s'utilitzarà per a l'emmagatzematge d'energia tèrmica (*TES). Una major conductivitat tèrmica en el fluid de transferència de calor millora l'eficàcia de la transferència de calor entre el fluid i els materials al voltant, la qual cosa porta a aconseguir amb major rapidesa la temperatura de canvi de fase en els materials d'emmagatzematge. Quan s'usa un fluid de transferència de calor amb una conductivitat tèrmica superior, la temperatura del material d'emmagatzematge de calor experimenta fluctuacions més ràpides, la qual cosa reduïx significativament la duració necessària per a un canvi de fase complet. A més, usar materials de canvi de fase (PCM, en anglès) per a emmagatzemar calor en lloc del farciment convencional permet aprofitar el BHE com a sistema BTES. A més de disminuir considerablement la profunditat de perforació necessària, el sistema BTES pot emmagatzemar i alliberar energia diària i estacionalment per a reduir la càrrega durant les hores punta. No obstant això, hi ha un buit notable en la bibliografia sobre l'exploració i aplicació de nous materials d'emmagatzematge de calor i fluids de transferència de calor en les BHE per a fer-les aptes per a fins de BTES. Encara que s'han aplicat diverses innovacions per a millorar el rendiment dels BHE, com l'ús de materials plàstics avançats i l'optimització del disseny, la major part de la investigació s'ha centrat en l'ús convencional dels BHE. Hauria de prestar-se més atenció als avantatges potencials de l'aprofitament dels bescanviadors de calor mitjançant l'aplicació de nanofluids i PCM com a fluids de transferència de calor i mitjans d'emmagatzematge de calor, respectivament. Com ja s'ha esmentat, estos materials posseïxen propietats termo-físiques superiors que poden donar lloc a una transferència de calor més eficient, una reducció dels costos de perforació, un menor consum d'electricitat en les bombes de calor i una disminució de la resistència tèrmica de la perforació. Esta llacuna en la investigació fa necessària una investigació en profunditat per a determinar la viabilitat i factibilitat de l'aplicació d'estos materials avançats en les BHE, facilitant en última instància la seua transformació en sistemes BTES fiables. Per tant, els principals objectius d'esta tesi doctoral són estudiar experimental i numèricament els impactes de l'ús de materials avançats per al fluid termòfor i el grouting com ara nanofluids i PCMs, en el rendiment del BHE com a sistemes BTES. L'estudi pretén seleccionar els materials més favorables, convertint-se en una referència pràctica i fiable per a futurs projectes i sectors industrials. / [EN] Due to severe environmental pollution and worldwide energy deficiency, exploiting renewable energies has become more critical than ever. Shallow geothermal energy (SGE) is considered a sustainable and renewable energy source with significant advantages in space heating and cooling, industrial applications, greenhouses, electricity production, agriculture industry devices, and hot water production, among others. The ground source heat pump (GSHP) system is a promising technology for utilizing SGE. In this system, a borehole heat exchanger (BHE) plays an important role and directly influences the coefficient of performance (COP) of this shallow geothermal system. Different approaches have been carried out to enhance the performance of the BHE, including using advanced materials for pipes, heat transfer fluids, and backfill/grout, designing new geometries, and optimizing the BHE to be used as borehole thermal energy storage (BTES) systems. Drilling costs, heat pump electricity consumption, and borehole thermal resistance can be reduced using materials with appropriate thermo-physical properties like nanofluids and heat storage materials. This results in not only a more significant heat transfer between the heat transfer fluid, the backfill/grout, and the soil but also lessens the thermal effect on the surroundings. Heat transfer fluid is one of the factors in optimizing the BHE to be used for thermal energy storage (TES). Increased thermal conductivity in the heat transfer fluid enhances heat transfer efficiency between the fluid and the heat storage materials, leading to a more rapid attainment of the phase change temperature in the storage materials. In essence, when employing a heat transfer fluid with superior thermal conductivity, the temperature of the heat storage material experiences quicker fluctuations, resulting in a significant reduction in the duration required for a complete phase change. Moreover, the use of phase change material (PCM) as a heat storage medium instead of conventional backfill/grout enables the BHE to be beneficial and applicable as a BTES system. In addition to decreasing the required borehole depth considerably, the BTES system can store and release energy daily and seasonally to reduce the load during peak hours. However, there is a notable gap in the literature concerning exploring and applying new heat storage and heat transfer fluid materials in BHEs to render them suitable for TES purposes. While various approaches have been undertaken to enhance BHE performance, including using advanced materials and design optimizations, most research has concentrated on the conventional goal of BHEs. More attention should be given to the potential advantages of these heat exchangers by applying nanofluids and PCMs as heat transfer fluids and heat storage media, respectively. As mentioned above, these materials possess superior thermo-physical properties that can lead to more efficient heat transfer, reduced drilling costs, lower electricity consumption in heat pumps, and diminished borehole thermal resistance. This research gap necessitates an in-depth investigation to determine the feasibility and practicality of implementing these advanced materials in BHEs, ultimately facilitating their transformation into reliable BTES systems. The outcomes of such research endeavors hold the promise of addressing environmental concerns and global energy deficiencies by advancing the utilization of renewable energy sources like SGE sustainably and effectively. Therefore, the main objectives of this doctoral dissertation are to study experimentally and numerically the impacts of using advanced materials for heat transfer fluid and backfill/grout, such as nanofluids and PCMs, on the performance of the BHE as BTES systems. The study aims to select the most favorable materials, making it a practical and reliable reference for future projects and industry sectors. / This research has received funding from the European Union’s Horizon 2020 Research and Innovation program named GEOCOND under grant agreement No [727583]. / Javadi, H. (2024). Experimental and Numerical Study of the Thermo-Fluid Dynamics of Borehole Heat Exchangers Incorporating Advanced Materials to be Optimized for use as Thermal Energy Storage (BTES) [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203144 / Compendio
35

Högtempererat borrhålslager för fjärrvärme / High Temperature Borehole Thermal Energy Storage for District Heating

Hallqvist, Karl January 2014 (has links)
The district heating load is seasonally dependent, with a low load during periods of high ambient temperature. Thermal energy storage (TES) has the potential to shift heating loads from winter to summer, thus reducing cost and environmental impact of District Heat production. In this study, a concept of high temperature borehole thermal energy storage (HT-BTES) together with a pellet heating plant for temperature boost, is presented and evaluated by its technical limitations, its ability to supply heat, its function within the district heating system, as well as its environmental impact and economic viability in Gothenburg, Sweden, a city with access to high quantities of waste heat. The concept has proven potentially environmentally friendly and potentially profitable if its design is balanced to achieve a good enough supply temperature from the HT-BTES. The size of the heat storage, the distance between boreholes and low borehole thermal resistance are key parameters to achieve high temperature. Profitability increases if a location with lower temperature demand, as well as risk of future shortage of supply, can be met. Feasibility also increases if existing pellet heating plant and district heating connection can be used and if lower rate of return on investment can be accepted. Access to HT-BTES in the district heating network enables greater flexibility and availability of production of District Heating, thereby facilitating readjustments to different strategies and policies. However, concerns for the durability of feasible borehole heat exchangers (BHE) exist in high temperature application. / Värmebehovet är starkt säsongsberoende, med låg last under perioder av högre omgivningstemperatur och hög last under perioder av lägre omgivningstemperaturer. I Göteborg finns en stor mängd spillvärme tillgängligt för fjärrvärmeproduktion sommartid när behovet av värme är lågt. Tillgång till säsongsvärmelager möjliggör att fjärrvärmeproduktion flyttas från vinterhalvår till sommarhalvår, vilket kan ge såväl lönsamhet som miljönytta. Borrhålsvärmelager är ett förhållandevis billigt sätt att lagra värme, och innebär att berggrunden värms upp under sommaren genom att varmt vatten flödar i borrhål, för att under vinterhalvåret användas genom att låta kallt vatten flöda i borrhålen och värmas upp. I traditionella borrhålsvärmelager används ofta värmepump för att höja värmelagrets urladdade temperatur, men på grund av höga temperaturkrav för fjärrvärme kan kostnaden för värmepump bli hög. I denna rapport föreslås ett system för att klara av att nå höga temperaturer till en lägre kostnad. Systemet består av ett borrhålsvärmelager anpassat för högre temperaturer (HT-BTES) samt pelletspannor för att spetsa lagrets utgående fluid för att nå hög temperatur. Syftet med rapporten är att undersöka potentialen för detta HT-BTES-system med avseende på dess tekniska begränsningar, förmåga till fjärrvärmeleverans, konsekvenser för fjärrvärmesystemet, samt lönsamhet och miljöpåverkan. För att garantera att inlagringen av värme inte är så stor att priset för inlagrad värme ökar väsentligt, utgår inlagringen från hur mycket värme som kyls bort i fjärrvärmenätet sommartid. I verkligheten finns betydligt mer värme tillgänglig till låg kostnad. När HT-BTES-systemet producerar fjärrvärme, ersätts fjärrvärmeproduktion från andra produktionsenheter, förutsatt att HT-BTES-systemets rörliga kostnader är lägre. I Göteborg ersätts främst naturgas från kraftvärme, men också en del flis. Kostnadsbesparingen beror på differensen för total fjärrvärmeproduktionskostnad med och utan HT-BTES-systemet. Undersökningen visar att besparingen är större om HT-BTES-systemet placeras i ett område där det är möjligt att mata ut fjärrvärme med lägre temperatur. Om urladdning från HT-BTES kan ske med hög temperatur ökar också besparingen. Detta sker om lagrets volym ökar, om avståndet mellan borrhål minskar eller om värmeöverföringen mellan det flödande vattnet i borrhålen och berggrunden ökar. Dessa egenskaper för lagret leder också till minskade koldioxidutsläpp. Storleken på besparingen beror dock i hög grad på hur bränslepriser utvecklas i framtiden. Strategiska fördelar med HT-BTES-systemet inkluderar; minskad miljöpåverkan, robust system med lång teknisk livslängd (för delar av HT-BTES-systemet), samt att inlagring av värme kan ske från många olika produktionsenheter. Dessutom kan positiva bieffekter identifieras. Undersökningen visar att HT-BTES-systemet har god potential att ge lönsamhet och minskad miljöpåverkan, och att anläggning och drift av lagret kan ske utan omfattande lokal miljöpåverkan. Det har också visats att de geologiska förutsättningarna för HT-BTES är goda på många platser i Göteborg, även om lokala förhållanden kan skilja sig åt. För att nå lönsamhet för HT-BTES-systemet krävs en avvägning på utformning av lagret för att nå hög urladdad temperatur utan att investeringskostnaden blir för stor. Undersökningen visar att om anslutning av HT-BTES-systemet kan ske mot befintlig anslutningspunkt eller till befintlig värmepanna kan investeringskostnaden minska och därmed lönsamheten öka. Placering av HT-BTES-systemet i områden med risk för överföringsbegränsningar kan också minska behovet av att förstärka fjärrvärmenätet, och således bidra till att minska de kostnader som förstärkning av nätet innebär. Betydelsefulla parametrar för att nå lönsamhet för HT-BTES-system inkluderar dessutom kostnaden för inlagrad värme liksom vilket vinstkrav som kan accepteras. Tillgång till HT-BTES möjliggör ökad nyttjandegrad och flexibilitet för fjärrvärmeproduktionsenheter, och därmed ökad anpassningsmöjlighet till förändrade förutsättningar på värmemarknaden. Dock återstår att visa att komponenter som klarar de höga temperaturkraven kan tillverkas till acceptabel kostnad.

Page generated in 0.3522 seconds