• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Värmeöverföring i bergvärmesystem : En numerisk analys av den ringformade koaxiala borrhålsvärmeväxlaren / Heat transfer in ground source heat pump systems : A numerical analysis of the annular coaxial borehole heat exchanger

Westin, Rasmus January 2012 (has links)
The borehole heat exchangers of today suffer from poor thermal and hydrodynamic performance. The purpose of this thesis is to improve the performance of ground source heat pump systems and thermal energy storages by increasing the energy efficiency of the borehole heat exchangers. For this reason, the annular coaxial borehole heat exchanger (CBHE) has been analyzed. This type of heat exchanger is interesting in terms of both thermal and hydrodynamic performance. A model has been set up in the program Comsol Multiphysics in order to investigate the heat transfer characteristics along the borehole. A literature survey that summarizes the analytical calculation methods developed in earlier Swedish research is presented in the report. Different geometries with or without insulation of the central pipe have been analyzed and the effective borehole resistance for each geometry has been calculated based on the simulation results. The model has been validated against a recently performed thermal response test, and shows very good correlation with reality. The results from the simulations show that by using the annular CBHE an increase of 2-3 °C in the evaporator of the heat pump can be achieved. Calculations show that the pump work (head loss) can be reduced to 1/6 of the corresponding case with a single U-pipe. There arises a vertical temperature gradient in the bedrock when recharging and extracting heat with the annular CBHE. This means that the annular CBHE acts like a counter-flow heat exchanger which is thermally optimal. In total, the simulation result shows that the annular CBHE geometry in this thesis can increase a system's seasonal performance factor (SPF) with 10-19 % in comparison with a U-pipe BHE. This is equivalent to 10-19 % lower electrical power consumption every year.
2

Construction and Validation of a Lab-scaleBorehole Thermal Energy Storage Model / Konstruktion och validering av en laboratoriemodell av ettborrhalsvarmelager

Dong, Haoyang January 2022 (has links)
Borehole heat exchangers are widely used in heat pumps of residential buildings and industrialsystems. It is known as one of the most energy ecient technologies which provides heatingand cooling by using sustainable geothermal energy. The life time of borehole heat exchangerslasts more than 50 years which is longer than combustion boilers. Therefore, designing abore eld with accurate sizing is important for its future applications. Due to the large volumeof the ground, the transient heat transfer process of the bore eld lasts for a long time span. Because of this, only a few of the heat transfer models for borehole ground heat exchangersare validated by experiments. Besides, experimental validation in a real scale borehole can bedicult because of the uncertainty of the composition and thermal properties of the ground. A solution to faster experimental validation is to scale down the size of the borehole andground. This report presents the construction process of a lab-scale model simulating a 4x4 bore eldof 300 m depth vertical boreholes. The process of experimental construction is describedin detail, including ground set up, conductivity test, construction of hydraulic system anddata acquisition system. The pressure drop of hydraulics system is around 2.8 bar under the a flow rate of 200 ml/min and corresponding pump speed is around 2900 to 3100 rpm. The property of the sand has been investigated through a series of conductivity tests, which shows an average thermal conductivity of 1.75 W / (m • K) and average thermal diffusivity of 8.14x10-7 m2/s. Numerical simulation (via COMSOL) is carried out for preliminary validation. Comparison of experimental and simulation results shows discrepancies and one possible reason can be: the actual heat injection rate in experiment is lower than simulation due to heat losses of hydraulic system; uncertainty of ground (saturated sand) conductivity and thermal diffusivity. / Borrhålsvärmeväxlare används ofta i värmepumpar i bostadshus och industrisystem. Det är känt som en av de mest energieffektiva teknikerna som tillhandahåller värme och kyla genom att använda hållbar geotermisk energi. Livslängden för borrhålsvärmeväxlare varar mer än 50 år vilket är längre än förbränningspannor. Därför är det viktigt att utforma ett borrfalt med exakt dimensionering för dess framtida tillämpningar. På grund av den stora markvolymen varar den transienta värmeöverforingsprocessen i borrfältet under lång tid. På grund av detta är endast ett fåtal av värmeöverföringsmodellerna för borrhålsjordvärmeväxlare validerade genom experiment. Dessutom kan experimentell validering i ett borrhål i verklig skala vara svårt på grund av osäkerheten i markens sammansättning och termiska egenskaper. En lösning för snabbare experimentell validering är att skala ner storleken på borrhålet och marken. Denna rapport presenterar konstruktionsprocessen av en modell i labbskala som simulerar ett 4x4-borrfält med 300 m djupa vertikala borrhål. Processen for experimentell konstruktion beskrivs i detalj, inklusive markuppställning, konduktivitetstest, konstruktion av hydraulsystem och datainsamlingssystem. Tryckfallet for hydrauliksystemet är cirka 2,8 bar under en flödeshastighet pa 200 ml/min och motsvarande pumphastighet är runt 2900 till 3100 rpm. Sandens egenskaper har undersökts genom en serie konduktivitetstester, som visar en genomsnittlig värmeledningsformåga pa 1,75 W/(m • K) och en genomsnittlig termisk dffusivitet på 8.14x10 -7 m2/s.  Numerisk simulering (via COMSOL) utförs för preliminär validering. Jämförelse av experimentella och simuleringsresultat visar avvikelser och en möjlig orsak kan vara: den faktiska värmeinsprutningshastigheten i experimentet är lägre än simulering på grund av värmeförluster i hydraulsystemet; osäkerhet i markens (mättad sand) konduktivitet och termisk diffusivitet.
3

Högtempererat borrhålslager för fjärrvärme / High Temperature Borehole Thermal Energy Storage for District Heating

Hallqvist, Karl January 2014 (has links)
The district heating load is seasonally dependent, with a low load during periods of high ambient temperature. Thermal energy storage (TES) has the potential to shift heating loads from winter to summer, thus reducing cost and environmental impact of District Heat production. In this study, a concept of high temperature borehole thermal energy storage (HT-BTES) together with a pellet heating plant for temperature boost, is presented and evaluated by its technical limitations, its ability to supply heat, its function within the district heating system, as well as its environmental impact and economic viability in Gothenburg, Sweden, a city with access to high quantities of waste heat. The concept has proven potentially environmentally friendly and potentially profitable if its design is balanced to achieve a good enough supply temperature from the HT-BTES. The size of the heat storage, the distance between boreholes and low borehole thermal resistance are key parameters to achieve high temperature. Profitability increases if a location with lower temperature demand, as well as risk of future shortage of supply, can be met. Feasibility also increases if existing pellet heating plant and district heating connection can be used and if lower rate of return on investment can be accepted. Access to HT-BTES in the district heating network enables greater flexibility and availability of production of District Heating, thereby facilitating readjustments to different strategies and policies. However, concerns for the durability of feasible borehole heat exchangers (BHE) exist in high temperature application. / Värmebehovet är starkt säsongsberoende, med låg last under perioder av högre omgivningstemperatur och hög last under perioder av lägre omgivningstemperaturer. I Göteborg finns en stor mängd spillvärme tillgängligt för fjärrvärmeproduktion sommartid när behovet av värme är lågt. Tillgång till säsongsvärmelager möjliggör att fjärrvärmeproduktion flyttas från vinterhalvår till sommarhalvår, vilket kan ge såväl lönsamhet som miljönytta. Borrhålsvärmelager är ett förhållandevis billigt sätt att lagra värme, och innebär att berggrunden värms upp under sommaren genom att varmt vatten flödar i borrhål, för att under vinterhalvåret användas genom att låta kallt vatten flöda i borrhålen och värmas upp. I traditionella borrhålsvärmelager används ofta värmepump för att höja värmelagrets urladdade temperatur, men på grund av höga temperaturkrav för fjärrvärme kan kostnaden för värmepump bli hög. I denna rapport föreslås ett system för att klara av att nå höga temperaturer till en lägre kostnad. Systemet består av ett borrhålsvärmelager anpassat för högre temperaturer (HT-BTES) samt pelletspannor för att spetsa lagrets utgående fluid för att nå hög temperatur. Syftet med rapporten är att undersöka potentialen för detta HT-BTES-system med avseende på dess tekniska begränsningar, förmåga till fjärrvärmeleverans, konsekvenser för fjärrvärmesystemet, samt lönsamhet och miljöpåverkan. För att garantera att inlagringen av värme inte är så stor att priset för inlagrad värme ökar väsentligt, utgår inlagringen från hur mycket värme som kyls bort i fjärrvärmenätet sommartid. I verkligheten finns betydligt mer värme tillgänglig till låg kostnad. När HT-BTES-systemet producerar fjärrvärme, ersätts fjärrvärmeproduktion från andra produktionsenheter, förutsatt att HT-BTES-systemets rörliga kostnader är lägre. I Göteborg ersätts främst naturgas från kraftvärme, men också en del flis. Kostnadsbesparingen beror på differensen för total fjärrvärmeproduktionskostnad med och utan HT-BTES-systemet. Undersökningen visar att besparingen är större om HT-BTES-systemet placeras i ett område där det är möjligt att mata ut fjärrvärme med lägre temperatur. Om urladdning från HT-BTES kan ske med hög temperatur ökar också besparingen. Detta sker om lagrets volym ökar, om avståndet mellan borrhål minskar eller om värmeöverföringen mellan det flödande vattnet i borrhålen och berggrunden ökar. Dessa egenskaper för lagret leder också till minskade koldioxidutsläpp. Storleken på besparingen beror dock i hög grad på hur bränslepriser utvecklas i framtiden. Strategiska fördelar med HT-BTES-systemet inkluderar; minskad miljöpåverkan, robust system med lång teknisk livslängd (för delar av HT-BTES-systemet), samt att inlagring av värme kan ske från många olika produktionsenheter. Dessutom kan positiva bieffekter identifieras. Undersökningen visar att HT-BTES-systemet har god potential att ge lönsamhet och minskad miljöpåverkan, och att anläggning och drift av lagret kan ske utan omfattande lokal miljöpåverkan. Det har också visats att de geologiska förutsättningarna för HT-BTES är goda på många platser i Göteborg, även om lokala förhållanden kan skilja sig åt. För att nå lönsamhet för HT-BTES-systemet krävs en avvägning på utformning av lagret för att nå hög urladdad temperatur utan att investeringskostnaden blir för stor. Undersökningen visar att om anslutning av HT-BTES-systemet kan ske mot befintlig anslutningspunkt eller till befintlig värmepanna kan investeringskostnaden minska och därmed lönsamheten öka. Placering av HT-BTES-systemet i områden med risk för överföringsbegränsningar kan också minska behovet av att förstärka fjärrvärmenätet, och således bidra till att minska de kostnader som förstärkning av nätet innebär. Betydelsefulla parametrar för att nå lönsamhet för HT-BTES-system inkluderar dessutom kostnaden för inlagrad värme liksom vilket vinstkrav som kan accepteras. Tillgång till HT-BTES möjliggör ökad nyttjandegrad och flexibilitet för fjärrvärmeproduktionsenheter, och därmed ökad anpassningsmöjlighet till förändrade förutsättningar på värmemarknaden. Dock återstår att visa att komponenter som klarar de höga temperaturkraven kan tillverkas till acceptabel kostnad.

Page generated in 0.049 seconds