Spelling suggestions: "subject:"earth conergy designer"" "subject:"earth conergy adesigner""
1 |
Numerical analysis using simulations for a geothermal heat pump system. : Case study: modelling an energy efficient houseIlisei, Gheorghe January 2018 (has links)
The ground source resources are becoming more and more popular and now the ground source heat pumps are frequently used for heating and cooling different types of buildings. This thesis aims at giving a contribution in the development of the thermal modelling of borehole heat storage systems. Furthermore, its objective is to investigate the possibility of implementing of a GSHP (ground source heat pump) with vertical boreholes, in order to deliver the heating and cooling demand for a passive house and to emphasize some certain advantages of this equipment even in the case of a small building (e.g. residential house). A case study is presented to a suitable modelling tool for the estimation of the thermal behaviour of these systems GSHP by combining the outcome from different modelling programs. In order to do that, a very efficient residential solar house (EFden House – a passive residential single-family house, which was projected and built in Bucharest with academic purposes) is being analysed. The numerical results are produced using the software DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of using 2 different modelling programs and another sizing method for the borehole heat exchanger design (ASHRAE method) is to make sure that all the calculations and results are valid and reliable when analysing such a system theoretically (in the first phases of implementing a project), before performing a geotechnical study or a thermal response test in order to assess the feasibility of such a project beforehand. The results highlight that the length of the borehole, which is the main design parameter and also a good index in estimating the cost of the system, is directly influenced by the other fundamental variables like thermal conductivity of the grout, of the soil and the heat carrier fluid. Also, some correlations between these parameters and the COP (coefficient of performance) of the system were made. The idea of sizing the length of boreholes using two different methods shows the reliability of the modelling tool. The results showed a difference of only 2.5%. Moreover, the length of borehole is very important as it was calculated that can trigger a difference in electricity consumption of the GSHP up to 28%. It also showed the fact that the design of the whole system can be done beforehand just using modelling tools, without performing tests in-situ. The method aims at being considered as an efficient tool to estimate the length of the borehole of a GSHP system using several modelling tools. / <p>The presentation was made via Skype due to the programme being online based</p>
|
2 |
Temperaturzoner för lagring av värmeenergi i cirkulärt borrhålsfält / Temperature stratification of borehole thermal energy storagesPenttilä, Jens January 2013 (has links)
The thermal response of a borehole field is often described by non‐dimensional response factors called gfunctions.The g‐function was firstly generated as a numerical solution based on SBM (Superposition BoreholeModel). An analytical approach, the FLS (Finite Line Source), is also accepted for generating the g‐function. In thiswork the potential to numerically produce g‐functions is studied for circular borehole fields using the commercialsoftware COMSOL. The numerical method is flexible and allows the generation of g‐functions for any boreholefield geometry. The approach is partially validated by comparing the solution for a square borehole field containing36 boreholes (6x6) with g‐functions generated with the FLS approach and with the program EED (Earth EnergyDesigner). The latter is based on Eskilsons SBM, one of the first documents where the concept of g‐functions wasintroduced. Once the approach is validated, the square COMSOL model is compared with a circular geometryborehole field developed by the same method, consisting of 3 concentric rings having 6, 12, and 18 boreholes.Finally the influence on the circular geometry g‐function is studied when connecting the boreholes in radial zoneswith different thermal loads. / Den termiska responsen för ett borrhålsfält beskrivs ofta med den dimensionslösa responsfunktionen kallad gfunktion.Responsfunktionen togs först fram som en numerisk lösning med SBM (Superposition Borehole Model).En analytisk metod, FLS (Finite Line Source) är också accepterad för framtagandet av g‐funktioner. I det här arbetetundersöks förutsättningarna att numeriskt ta fram g‐funktioner för cirkulära borrhålsfält genom att använda detkommersiella simuleringsprogrammet COMSOL Multiphysics. Den numeriska metoden är flexibel och kananvändas för alla typer av borrhålsgeometrier. Metoden att använda COMSOL valideras delvis genom att jämföraresultatet för ett kvadratiskt borrhålsfält innehållande 36 borrhål (6x6) med lösningar framtagna med FLS och meddimensioneringsprogrammet EED (Earth Energy Designer). Det senare har sin grund i Eskilsons SBM, ett av deförsta arbeten där begreppet g‐funktion introducerades. När metoden att använda COMSOL verifierats, jämförsden kvadratiska borrhålsmodellen med en cirkulär borrhålskonfiguration, upprättad med samma metod,innehållande 3 koncentriska ringar om vardera 6, 12, 18 borrhål. Slutligen undersöks hur den termiska responsenpåverkas då borrhålen i ett cirkulärt borrhålsfält kopplas samman och grupperas i radiella zoner med olika termiskalaster. / SEEC Scandinavian Energy Efficiency Co.
|
3 |
Optimización teórico-experimental de sondas de calor para intercambio geotérmico (SGE) según condiciones hidrogeológicas, características geométricas y propiedades de sus materialesBadenes Badenes, Borja 01 February 2021 (has links)
Tesis por compendio / [ES] Uno de los mayores retos para el mercado de bombas de calor geotérmicas es el alto coste asociado a la perforación de los intercambiadores de calor geotérmicos. Conseguir unos intercambiadores de calor geotérmicos más eficientes reduciría dicho coste, ya que sería necesaria una menor longitud de intercambiador para obtener las mismas temperaturas de trabajo en él (misma eficiencia de la bomba de calor).
La eficiencia térmica de un intercambiador de calor geotérmico está caracterizada por su resistencia térmica. Dicha resistencia térmica depende de una serie de elementos entre los que se encuentran: propiedades y caudal del fluido que recorre el intercambiador de calor, diámetro de la perforación geotérmica, geometría y materiales de la tubería del intercambiador de calor y las propiedades del material de relleno de la perforación (grouting).
Cuanto mayor sea la resistencia térmica del intercambiador de calor, menor será el calor transferido entre el fluido caloportador y el terreno, traduciéndose en una necesidad mayor de longitud de intercambiador enterrado. Por lo tanto, es necesario una reducción de este parámetro al mínimo posible.
En consecuencia, el objetivo principal de esta tesis doctoral consiste en, a partir de un modelo analítico comprensivo de cuantificación del impacto de los parámetros anteriores, realizar un estudio detallado para analizar su influencia combinada en la resistencia térmica del intercambiador geotérmico, pero también examinando dicho efecto en otros planos, como costes económicos de ejecución del intercambiador y de explotación (consumo eléctrico de la bomba de calor y costes de bombeo asociados). / [CA] Un dels majors reptes per al mercat de bombes de calor geotèrmiques és l'alt cost associat a la perforació dels bescanviadors de calor geotèrmics. Aconseguir uns bescanviadors de calor geotèrmics més eficients reduiria aquest cost, ja que seria necessària una menor longitud de bescanviador per a obtenir les mateixes temperatures de treball en ell (mateixa eficiència de la bomba de calor).
L'eficiència tèrmica d'un bescanviador de calor geotèrmic està caracteritzada per la seva resistència tèrmica. Aquesta resistència tèrmica depèn d'una sèrie d'elements entre els quals es troben: propietats i cabal del fluid que recorre el bescanviador de calor, diàmetre de la perforació geotèrmica, geometria i materials de la canonada del bescanviador de calor i les propietats del material de farciment de la perforació (grouting).
Com més gran sigui la resistència tèrmica del bescanviador de calor, menor serà la calor transferida entre el fluid termòfor i el terreny, traduint-se en una necessitat major de longitud de bescanviador enterrat. Per tant, és necessari una reducció d'aquest paràmetre al mínim possible.
En conseqüència, l'objectiu principal d'aquesta Tesi Doctoral consisteix en, a partir d'un model analític comprensiu de quantificació de l'impacte dels paràmetres anteriors, realitzar un estudi detallat per a analitzar la seva influència combinada en la resistència tèrmica del bescanviador geotèrmic, però també examinant aquest efecte en altres plans, com a costos econòmics d'execució del bescanviador i d'explotació (consum elèctric de la bomba de calor i costos de bombament). / [EN] One of the biggest challenges for the ground source heat pump market is the high cost associated with drilling geothermal borehole heat exchangers. Achieving more efficient geothermal heat exchangers would reduce this cost, since a shorter exchanger length would be required to obtain the same working temperatures in it (same efficiency of the heat pump).
The thermal efficiency of a geothermal heat exchanger is characterized by its borehole thermal resistance. This borehole thermal resistance depends on a number of parameters, mainly: properties and flow rate of the working fluid that flows through the borehole heat exchanger, diameter of the geothermal borehole, geometry and materials of the heat exchanger pipe and the properties of the borehole grouting material.
The higher thermal resistance of the heat exchanger, the less heat is transferred between the heat carrier fluid and the ground, resulting in an increased requirement for the length of the buried heat exchanger. Consequently, it is essential to reduce this parameter to the minimum possible.
Therefore, the main objective of this Ph. Doctoral Thesis is to carry out, based on a comprehensive analytical model of quantification of the impact of the above mentioned parameters, a detailed study to analyze their combined influence on the thermal resistance of the geothermal borehole, but also exploring this effect in other less researched areas, such as economic costs of running the exchanger and operating it (electricity consumption of the heat pump and associated pumping costs). / This research has received funding from the European Union’s Horizon 2020 Research and Innovation program under grant agreement No [657982], [727583] and [792355]. / Badenes Badenes, B. (2020). Optimización teórico-experimental de sondas de calor para intercambio geotérmico (SGE) según condiciones hidrogeológicas, características geométricas y propiedades de sus materiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160477 / Compendio
|
Page generated in 0.0537 seconds