Spelling suggestions: "subject:"cow enthalpy geothermal conergy"" "subject:"cow enthalpy geothermal coenergy""
1 |
Numerical analysis using simulations for a geothermal heat pump system. : Case study: modelling an energy efficient houseIlisei, Gheorghe January 2018 (has links)
The ground source resources are becoming more and more popular and now the ground source heat pumps are frequently used for heating and cooling different types of buildings. This thesis aims at giving a contribution in the development of the thermal modelling of borehole heat storage systems. Furthermore, its objective is to investigate the possibility of implementing of a GSHP (ground source heat pump) with vertical boreholes, in order to deliver the heating and cooling demand for a passive house and to emphasize some certain advantages of this equipment even in the case of a small building (e.g. residential house). A case study is presented to a suitable modelling tool for the estimation of the thermal behaviour of these systems GSHP by combining the outcome from different modelling programs. In order to do that, a very efficient residential solar house (EFden House – a passive residential single-family house, which was projected and built in Bucharest with academic purposes) is being analysed. The numerical results are produced using the software DesignBuilder, EED (Earth Energy Designer) and a sizing method for the length of the boreholes (ASHRAE method). The idea of using 2 different modelling programs and another sizing method for the borehole heat exchanger design (ASHRAE method) is to make sure that all the calculations and results are valid and reliable when analysing such a system theoretically (in the first phases of implementing a project), before performing a geotechnical study or a thermal response test in order to assess the feasibility of such a project beforehand. The results highlight that the length of the borehole, which is the main design parameter and also a good index in estimating the cost of the system, is directly influenced by the other fundamental variables like thermal conductivity of the grout, of the soil and the heat carrier fluid. Also, some correlations between these parameters and the COP (coefficient of performance) of the system were made. The idea of sizing the length of boreholes using two different methods shows the reliability of the modelling tool. The results showed a difference of only 2.5%. Moreover, the length of borehole is very important as it was calculated that can trigger a difference in electricity consumption of the GSHP up to 28%. It also showed the fact that the design of the whole system can be done beforehand just using modelling tools, without performing tests in-situ. The method aims at being considered as an efficient tool to estimate the length of the borehole of a GSHP system using several modelling tools. / <p>The presentation was made via Skype due to the programme being online based</p>
|
Page generated in 0.1054 seconds