• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • 8
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and construction of a mobile equipment for thermal response test in borehole heat exchangers

Kamarad, Anthony January 2012 (has links)
In 2010, the Ground Source Heat Pumps (GSHPs) market in the European Union went up over one million (1 014 436 units at the end of 2010 according to EUROBSERV’ER 2011). In 2011, it was estimated around 1.25 million according to Bayer et al. (2012). With more than 378 000 units installed in 2010, according to the Swedish heat pump association (SVEP), the Swedish GSHPs market was the first in the EU. As for the French GSHPs market, it was estimated to 151 938 units in service in 2010, which propelled France at the third rank in the EU. However, despite a relatively important number of GSHPs installed in the whole EU, since 2008 GSHP sales have shrank. Even Sweden which has been the most competitive country sees its GSHP sales decline in the first quarter of 2012 (EUROBSERV’ER 2011). This report is the achievement of my Master of Science Thesis project. It also represents the end of my studies at INSA Lyon in France and concludes my degree in Energetic and Environment Engineering. This report deals with the improvement of a heat injection apparatus which is available at KTH (Royal Institute of Technology). This equipment is better known as Thermal Response Test (TRT) apparatus. This kind of equipment improves Borehole Heat Exchangers (BHE) design in terms of size and cost benefits. This technology is generally used to design GSHP installations in both domestic and industrial purposes. It allows to determine really important thermal BHE parameters: the thermal conductivity of the ground and the borehole thermal resistance. The report covers a theoretical description of TRT experiments, the reasons and objectives of such a project, the apparatus design and its construction. The last part is dedicated to a first experimental laboratory results and some problems met during the project course.
2

Experimental evaluation of thermal response tests performed on borehole strings

Millar, Chantel January 2021 (has links)
This thesis investigates the validity of the standard thermal response test (TRT) results when performed on a series of boreholes (string). The typical TRT consists of subjecting a single borehole to a constant heat injection rate to obtain the temperature response in the ground which can then be used to determine the ground thermal conductivity. When completed on a single borehole, the results may be analyzed with the line source theory, since the assumption of a single line heat source is valid. For multiple boreholes, the assumption of a single line source becomes invalid if the spacing between the boreholes is small enough for borehole thermal interaction to occur. Moreover, for boreholes that are charged in series, heat transfer from the horizontal pipes that connect the vertical boreholes may also influence the ground thermal response. This thesis takes an in-depth look at the different factors that affect the results of TRTs performed on borehole strings. Different analysis methods are implemented to determine areas of improvement for determining the thermal conductivity of the soil surrounding the borehole string. For the analysis, the infinite line source (ILS) model and a model developed using TRNSYS 18 were used to determine the effective thermal conductivity. The results show that TRNSYS is unable to accurately model a TRT performed on a borehole string. The horizontal pipe model within TRNSYS proved to have significant fundamental issues, as the effective thermal conductivity is greatly underestimated with values of 1.2±0.1W/mK and the results of increasing the horizontal length both increased and decreased the effective thermal conductivities. The results from the ILS demonstrate that an effective thermal conductivity of 1.7±0.2W/mK is an appropriate estimate of the soil at the BTES field tested, as the borehole string with the furthest spacing between boreholes gave an effective thermal conductivity of 1.7W/mK. Performing multiple thermal response tests within the same BTES field also provided evidence of the need to implement multiple TRTs as common practise. The testing presented shows that the effective thermal conductivity can vary within ±0.2W/mK within the same relative location. With better knowledge of the thermal properties within the BTES field location comes the opportunity for improved planning of operation and control of thermal distribution within the field. This would be especially beneficial when dealing with seasonal BTES fields / Thesis / Master of Applied Science (MASc)
3

Geoterminio šildymo ekonominis ir techninis įvertinimas / An economic and technical evaluation of geothermal heating

Tamošaitis, Donatas 24 February 2011 (has links)
Žemės šilumos siurblių sistemos surenka žemės šilumą, dažniausiai vertikaliu U formos gręžinio šilumokaičiu. U formos gręžinio šilumokaičio našumas priklauso nuo šiluminių žemės savybių, taip pat nuo gręžinyje naudojamo skiedinio ar užpildo. Siekiant, kad Žemės šilumos siurblių sistemos pasiteisintų, projektuojant reikia atsižvelgti į geologinių struktūrų šiluminį laidumą ir gręžinio šilumokaičio šiluminę varžą. Šio darbo tikslas buvo nustatyti šilumos siurblio, naudojančio grunto šilumą, pritaikymo individualioje sodyboje siurblio techninis ir ekonominis įvertinimas. Nustatyta, kad investicijos projektui įgyvendinti, kai gyvenamajam pastatui šildyti ir buitiniam karštam vandeniui ruošti šildymo sezono metu šilumą gamina šilumos siurblys, naudojantis grunto šilumą, palyginti su tiesioginiu elektros naudojimu pastatui šildyti ir buitiniam karštam vandeniui ruošti, atsiperka per 6,3 metus. Šiluminės reakcijos testas padeda nustatyti šiluminį žemės laidumą (λ) gręžinio šilumokaičio įrengimo vietoje, bei efektyvią gręžinio šilumokaičio šiluminę varžą (Rb). Pagrindinis tikslas buvo suderinti gręžinio šilumokaitį su žemės sąlygomis, taip pat nustatyti gręžinio gylio poveikį (60 m: VB2; 90 m: VB3). / Ground source heat pump systems exchange heat with the ground, often through a vertical, U-tube, borehole heat exchanger. The performance of this U-tube borehole heat exchanger depends on the thermal properties of the ground formation, as well as grout or backfill in the borehole. The design and economic probability of ground source heat pump systems need the thermal conductivity of geological structure and thermal resistance of borehole heat exchanger. An economic and technical evaluation of the heat pump, which is using ground heat, in individual homestead. It was found that the investment for this project, when heat pump using ground heat is used to heat residential building and domestic hot water in heating season, compared with the use of direct electric heating of buildings and domestic hot water payback within 6.3 years. Thermal response test method allows the in-situ determination of the thermal conductivity (l) of the ground formation in the vicinity of a borehole heat exchanger, as well as the effective thermal resistance (Rb) of this latter. The main goal has been to determine same in-situ ground type of borehole heat exchanger, including the effect of borehole’s depths (60 m: VB2; 90 m: VB3).
4

Heat Transport Phenomena in Shallow Geothermal Boreholes / Development of a Numerical Model and a Novel Extension for the Thermal Response Test Method by Applying Oscillating Excitations

Oberdorfer, Phillip 21 February 2014 (has links)
No description available.
5

Comparison of different Line Source Model approaches for analysis of Thermal Response Test in a U-pipe Borehole heat Exchanger.

Monzó, Patricia January 2011 (has links)
Ground Source Heat Pumps (GHSPs) is a relevant application and around 3 million installations are setting up at the beginning of 2010 (IEA ECES Annex 21). The improvements in GSHPs are currently focused on the optimization of the system and the reduction of costs installations. The thermal conductivity of the ground and thermal resistance of the Borehole Heat Exchanger (BHE) are important design parameters for Borehole Thermal Energy Storage (BTES) systems. The Thermal Response Test (TRT), which has been used up to now in the GHE design, only allows estimating mean values for thermal conductivity of the surrounding ground and borehole resistance. However, the ground thermal conductivity and borehole thermal resistance may present local variation along the borehole depth. For improving conventional TRT, the optical fiber technology is applied to collect information about the temperature profiles in the borehole. Thermal Response Test (TRT) logs the inlet and outlet fluid temperatures; meanwhile, the Distributed Thermal Response Test (DTRT) carries out a profile of the temperature along the borehole depth, in this case with fiber optic cables. This Master of Science Thesis focuses on the comparison and analysis of DTRT measurements in a U-pipe borehole in order to estimate the thermal conductivity and the borehole thermal resistance along the borehole. The comparison and the analysis are carried out by: •Comparing the differences of TRT results depending on the heat power rate considered – constant and by steps-. •Comparing the results from two different resolution Distributed Test Sensing (DTS) equipments: Halo and Sentinel DTS. •Comparing the differences of TRT results as depending on the analytical procedure based on the line source theory: line source model and line source approximation.
6

Optimization of thermal response test equipment and evaluation tools

Simondon, Camille January 2014 (has links)
Nowadays Ground Source Heat Pumps (GSHP) are widely used to provide heating and/or cooling as well as domestic hot water in commercial and residential buildings. The Swedish GSHPs market is the first one in the European Union with more than 378,000 units installed until 2010 according to the Swedish Heat Pump Association (SVEP). This thesis focuses on the improvement of a Thermal Response Test (TRT) apparatus available at KTH Royal Institute of Technology – Energy Technology Department. This equipment aims at improving Borehole Heat Exchanger (BHE) design in terms of size. Its key purpose is to evaluate two main BHE properties: the ground thermal conductivity and the borehole thermal resistance. A new command software is developed in order to control the TRT equipment and run TRT measurements. This new software is developed using Python as programming language and replaces an older program which needed LabVIEW to run. The TRT command software designed in this thesis provides the user with a simple and user-friendly interface to control each device of the equipment. Measurements are exported and saved to files which can be open with both Microsoft Excel and the analysis tool also developed in this thesis. The stand-alone evaluation tool can be used to analyse TRT and/or DTRT measurements. This analysis tool helps the user to compute large amount of data with few data manipulation and low computation time. Model parameters and TRT/DTRT measurement can be imported from files into it and different fitting settings are available to run the optimization, i.e. account for baseline variations (early activities in the borehole, different optimization periods, analysis during thermal recovery of the ground, single/multi-sectional analysis along the depth, among others). This report covers a theoretical description of TRT experiments and its models, the objectives of such a project and the development of the control and evaluation tools.
7

Improvements of U-pipe Borehole Heat Exchangers

Acuña, José January 2010 (has links)
<p>The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market.</p><p>This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground.</p> / QC 20100517 / EFFSYS2 / Efficient Use of Energy Wells for Heat Pumps
8

Estudo experimental da resposta térmica de fundações por estacas trocadoras de calor em solo não saturado / An experimental study of the thermal response of heat exchanger piles in unsaturated tropical soil

Bandeira Neto, Luis Antonio 08 December 2015 (has links)
O estudo experimental apresentado nesta dissertação foi realizado para avaliar a resposta térmica de fundações por estacas trocadoras de calor, que podem ser usadas para reduzir o elevado consumo de energia em sistemas de condicionamento de ar no Brasil. A principal motivação para a produção deste trabalho foi a ausência de estudos sobre o desempenho térmico de estacas e/ou furos trocadores de calor em solo tropical, que é muito comum em nosso país. Para esta pesquisa, cinco ensaios de resposta térmica (TRT) foram realizados no Campo Experimental de Fundações da Universidade de São Paulo em São Carlos/SP, Brasil. A camada de solo superficial deste terreno consiste de solo tropical não saturado, composto de areia argilosa coluvial (laterítico) sobre um solo residual de arenito (saprolito). O ensaio in situ denominado TRT é o método experimental mais comum para a determinação das propriedades térmicas de sistemas de fundações por estacas trocadoras de calor. Os experimentos foram realizados em duas estacas escavadas, com 12 m de profundidade, equipadas com tubos trocadores de calor, instaladas em uma camada de solo com temperatura média em torno de 24°C. O principal objetivo deste trabalho foi avaliar a performance de estacas trocadoras de calor na condição de solo e clima investigados (alta temperatura do solo, solo laterítico não saturado com alta porosidade próximo a superfície). Também foram verificados os efeitos da posição do nível d\'água, da vazão da água circulante na estaca, e da duração do ensaio nas propriedades térmicas das estacas trocadora de calor avaliadas. Os resultados encontrados da taxa de troca de calor por metro de estaca neste estudo variam 79 a 110 W/m, portanto, estas estacas mostram bom potencial de transferência de calor no local investigado. Os resultados desse estudo fornece informações úteis para a avaliação da eficiência de estacas trocadoras de calor como um sistema de refrigeração em regiões tropicais e subtropicais brasileiras. / Brazil is the fifth largest buyer of air conditioner in the world because of its tropical and subtropical climate. To address this problem, the current experimental study was carried out to evaluate the thermal response of energy piles that can be used to reduce the high energy consumption in cooling systems in Brazil. The key factor that motivates this study is that unsaturated tropical soils cover a significant part of the Brazilian territory, and the thermal performance of heat exchanger piles in typical Brazilian soil and climate has not been investigated before. Five Thermal Response tests (TRT) were conducted for this research in the Geotechnical research field of the University of São Paulo at São Carlos/SP, Brazil, of unsaturated tropical soil, including a superficial layer composed of colluvial clayey sand (lateritic) overlaying in a residual sandstone soil (saprolitic). Thermal response tests are the most common experimental method for determining thermal properties of the energy foundation systems. The tests were performed on two drilled piles of 12m length equipped with heat transfer pipes, installed a soil layer with average temperature of 24°C. The main objective of this work was to obtain some data about the thermal energy delivery of energy piles in the soil and climate condition investigated herein (high ground temperature, unsaturated and tropical soil with high porosity). The effects of ground water table, flow rate, duration of test, and number of heat exchanger U-pipes on the thermal properties of the energy pile were also evaluated in this study. The thermal parameters obtained allowed a first evaluation about the thermal efficiency of the piles in the particular soil. The results of heat exchange rate found in this study vary from 79 to 110 W/m, therefore energy piles installed in the investigated site show good heat transfer potential. This study provides interesting information to the evaluation of heat exchange efficiency in energy foundations to be used as a cooling system in tropical and subtropical Brazilian regions.
9

Estudo experimental da resposta térmica de fundações por estacas trocadoras de calor em solo não saturado / An experimental study of the thermal response of heat exchanger piles in unsaturated tropical soil

Luis Antonio Bandeira Neto 08 December 2015 (has links)
O estudo experimental apresentado nesta dissertação foi realizado para avaliar a resposta térmica de fundações por estacas trocadoras de calor, que podem ser usadas para reduzir o elevado consumo de energia em sistemas de condicionamento de ar no Brasil. A principal motivação para a produção deste trabalho foi a ausência de estudos sobre o desempenho térmico de estacas e/ou furos trocadores de calor em solo tropical, que é muito comum em nosso país. Para esta pesquisa, cinco ensaios de resposta térmica (TRT) foram realizados no Campo Experimental de Fundações da Universidade de São Paulo em São Carlos/SP, Brasil. A camada de solo superficial deste terreno consiste de solo tropical não saturado, composto de areia argilosa coluvial (laterítico) sobre um solo residual de arenito (saprolito). O ensaio in situ denominado TRT é o método experimental mais comum para a determinação das propriedades térmicas de sistemas de fundações por estacas trocadoras de calor. Os experimentos foram realizados em duas estacas escavadas, com 12 m de profundidade, equipadas com tubos trocadores de calor, instaladas em uma camada de solo com temperatura média em torno de 24°C. O principal objetivo deste trabalho foi avaliar a performance de estacas trocadoras de calor na condição de solo e clima investigados (alta temperatura do solo, solo laterítico não saturado com alta porosidade próximo a superfície). Também foram verificados os efeitos da posição do nível d\'água, da vazão da água circulante na estaca, e da duração do ensaio nas propriedades térmicas das estacas trocadora de calor avaliadas. Os resultados encontrados da taxa de troca de calor por metro de estaca neste estudo variam 79 a 110 W/m, portanto, estas estacas mostram bom potencial de transferência de calor no local investigado. Os resultados desse estudo fornece informações úteis para a avaliação da eficiência de estacas trocadoras de calor como um sistema de refrigeração em regiões tropicais e subtropicais brasileiras. / Brazil is the fifth largest buyer of air conditioner in the world because of its tropical and subtropical climate. To address this problem, the current experimental study was carried out to evaluate the thermal response of energy piles that can be used to reduce the high energy consumption in cooling systems in Brazil. The key factor that motivates this study is that unsaturated tropical soils cover a significant part of the Brazilian territory, and the thermal performance of heat exchanger piles in typical Brazilian soil and climate has not been investigated before. Five Thermal Response tests (TRT) were conducted for this research in the Geotechnical research field of the University of São Paulo at São Carlos/SP, Brazil, of unsaturated tropical soil, including a superficial layer composed of colluvial clayey sand (lateritic) overlaying in a residual sandstone soil (saprolitic). Thermal response tests are the most common experimental method for determining thermal properties of the energy foundation systems. The tests were performed on two drilled piles of 12m length equipped with heat transfer pipes, installed a soil layer with average temperature of 24°C. The main objective of this work was to obtain some data about the thermal energy delivery of energy piles in the soil and climate condition investigated herein (high ground temperature, unsaturated and tropical soil with high porosity). The effects of ground water table, flow rate, duration of test, and number of heat exchanger U-pipes on the thermal properties of the energy pile were also evaluated in this study. The thermal parameters obtained allowed a first evaluation about the thermal efficiency of the piles in the particular soil. The results of heat exchange rate found in this study vary from 79 to 110 W/m, therefore energy piles installed in the investigated site show good heat transfer potential. This study provides interesting information to the evaluation of heat exchange efficiency in energy foundations to be used as a cooling system in tropical and subtropical Brazilian regions.
10

Improvements of U-pipe Borehole Heat Exchangers

Acuña, José January 2010 (has links)
The sales of Ground Source Heat Pumps in Sweden and many other countries are having a rapid growth in the last decade. Today, there are approximately 360 000 systems installed in Sweden, with a growing rate of about 30 000 installations per year. The most common way to exchange heat with the bedrock in ground source heat pump applications is circulating a secondary fluid through a Borehole Heat Exchanger (BHE), a closed loop in a vertical borehole. The fluid transports the heat from the ground to a certain heating and/or cooling application. A fluid with one degree higher or lower temperature coming out from the borehole may represent a 2-3% change in the COP of a heat pump system. It is therefore of great relevance to design cost effective and easy to install borehole heat exchangers. U-pipe BHEs consisting of two equal cylindrical pipes connected together at the borehole bottom have dominated the market for several years in spite of their relatively poor thermal performance and, still, there exist many uncertainties about how to optimize them. Although more efficient BHEs have been discussed for many years, the introduction of new designs has been practically lacking. However, the interest for innovation within this field is increasing nowadays and more effective methods for injecting or extracting heat into/from the ground (better BHEs) with smaller temperature differences between the heat secondary fluid and the surrounding bedrock must be suggested for introduction into the market. This report presents the analysis of several groundwater filled borehole heat exchangers, including standard and alternative U-pipe configurations (e.g. with spacers, grooves), as well as two coaxial designs. The study embraces measurements of borehole deviation, ground water flow, undisturbed ground temperature profile, secondary fluid and groundwater temperature variations in time, theoretical analyses with a FEM software, Distributed Thermal Response Test (DTRT), and pressure drop. Significant attention is devoted to distributed temperature measurements using optic fiber cables along the BHEs during heat extraction and heat injection from and to the ground. / <p>QC 20100517</p> / EFFSYS2 / Efficient Use of Energy Wells for Heat Pumps

Page generated in 0.1087 seconds