• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 13
  • 11
  • 8
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 36
  • 24
  • 22
  • 21
  • 20
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hot spotsand mantle convection

Courtney, R. C. January 1985 (has links)
No description available.
2

Fluid dynamics and phase change in geothermal reservoirs

Fitzgerald, Shaun David January 1993 (has links)
No description available.
3

Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

Doherty, Prince Samuel January 1992 (has links)
No description available.
4

Methods of geothermal exploration with application to the Hampshire basin

Bloomer, Julie Ruth January 1980 (has links)
No description available.
5

The interpretation of tracer curves in Hot Dry Rock geothermal reservoirs

Rodrigues, Nelson Edgar Viegas January 1994 (has links)
No description available.
6

Rock joint and rock mass behaviour during pressurised hydraulic injections

Pine, R. J. January 1986 (has links)
The hydro-mechanical effects of high pressure fluid injections into jointed rock are considered mostly in the context of Hot Dry Rock (HDR) geothermal energy systems. In Part I, the mai n aspects ari sing from the HDR research at the "Camborne School of Mines (CSM) and Los Alamos Nat iana 1 Laboratory (LANL) projects are reviewed. Previous approaches to fluid-rock interacti ons at these projects and important observed phenomena are highlighted. Fundamental aspects of rock joint geometry, mechanical behaviour and flow regimes within jointed rock are also reviewed. These aspects are then related to possible conditions in HDR systems. The role of in situ stress conditions is of great significance in this study and is reviewed theoretically and in detail for both the CSM and LANL project sites. The revi ew incl udes a comprehensi ve seri es of measurements, by different techniques, organised and interpreted by the author at the CSM project. In Part II, model development, the emphasis is on intermediate fluid pressures which are too high for simple diffusion alone and too low for tensile hydraulic fracturing. The dominant mechanical activity is one of joint shear. Strike-slip shearing due to fluid injection is examined in two dimensions with the numerical model FRIP, which has been extended by the author. Similar behaviour is examined in three dimensions with an analytical model which is linked to microseismic observations. This model explains the observed phenomenon of downward shear growth. Joint distribution and mechanical properties, and their effect on fluid diffusivity, are examined and used in analytical models of fluid pressure pulse propagation, tracer transport, and rock stress increment transfer. All models are used to help interpret field data, mainly from the CSM project. The models are also of potential application to hydrocarbon reservoir stimulation, liquid waste disposal and leakage from high pressure water tunnels.
7

Energy-efficient design and application of geothermal energy in buildings of areas of protected cultural heritage: Case study Mani, Greece

Routsolias, Panagiotis January 2006 (has links)
No description available.
8

Numerical Analysis of Thermal Behavior and Fluid Flow in Geothermal Energy Piles

Thompson, Willis Hope III 11 November 2013 (has links)
Geothermal heat exchangers are a growing energy technology that improve the energy efficiency of heating and cooling systems in buildings. Vertical borehole heat exchangers (BHE) coupled with ground source heat pumps have been widely developed and researched in the past century. The major disadvantage of BHEs is the initial capital cost required to drill the boreholes. Geothermal energy piles (GEP) were developed to help offset the high initial cost of these systems. A GEP combines ground source heat pump technology with deep earth structural foundations of buildings. GEPs are relatively new technology and robust standards and guidelines have not yet been developed for the design of these systems. The main operational difference between GEPs and conventional BHEs is the length and diameter of the below ground heat exchangers. The diameter of a GEP is much larger and the length is typically shorter than BHEs. Computational fluid dynamics (CFD) analysis is used in this study to investigate and better understand how structural piles perform as geothermal heat exchangers. The CFD analysis is used to simulate an existing experimental energy pile test. The experimental test is modeled as built including fluid modeling to provide additional detail into the behavior of the circulation fluid within the pile. Two comparisons of large diameter GEPs are made using CFD analysis to gain knowledge of the effects of varying pile diameter and loop configuration. The thermal response test was successfully modeled using the CFD model. The CFD results closely match the results of the field test. The large diameter comparisons show that the performance of an energy pile will increase as the diameter increases with a constant loop density. Multiple numbers of loops were tested in a constant diameter pile and the results show that with symmetrically placed loops the performance will increase with a greater number of loops in the pile. / Master of Science
9

Numerical modelling of geothermal borehole heat exchanger systems

He, Miaomiao January 2012 (has links)
The large proportion of energy used in the built environment has made improving energy efficiency in buildings, in particular their heating, ventilation, and air conditioning (HVAC) systems, a policy objective for reducing energy consumption and CO2 emissions nationally and internationally. Ground source heat pump (GSHP) systems, due to their high coefficient of performance (COP) and low CO2 emissions are consequently, receiving increasing attention. This work is concerned with the modelling of borehole heat exchangers (BHEs), the commonest form of ground heat exchangers found in GSHP systems. Their careful design is critical to both the short timescale and long timescale performance of geothermal heat pump systems. Unlike conventional components of HVAC systems, BHEs cannot be designed on the basis of peak load data but require 3 application of dynamic thermal models that are able to take account of the heat transfer inside the borehole as well as the surrounding ground. The finite volume method has been applied to develop a dynamic three-dimensional (3D) model for a single BHE and BHE arrays. The multi-block boundary fitted structured mesh used in this model allows the complex geometries around the pipes in BHEs and the surrounding ground around the borehole to be represented exactly. The transport of the fluid circulating along the pipe loop has been simulated explicitly in this model. The ground underneath the borehole has also been represented in this model. Validation of the 3D model has been carried out by reference to analytical models of borehole thermal resistance and fluid transport in pipes, as well as experimental data. In this work, the 3D numerical model has been applied to investigate the three-dimensional characteristics of heat transfer in and around a BHE at both short and long timescales. By implementing a two-dimensional (2D) model using the same numerical method and comparing the simulation results from the 3D and 2D models, the most significant three-dimensional effects have been identified and quantified. The findings have highlighted some of the limitations of 2D models, and based on the findings, methods to improve the accuracy of a 2D model have been suggested and validated. Furthermore, the 3D and 2D finite volume models have been applied to simulate an integrated GSHP system and their effects on overall system performance predictions have been investigated. The 3D numerical model has also been applied to examine thermal interactions within BHE arrays and to evaluate the assumptions of the line source model and their implications in the analysis of thermal response test data.
10

Possibilities of Geothermal Energy and its Competitiveness  with Other Energy Sources

Hasan, Farhan January 2014 (has links)
Geothermal Energy is one of the common talks at present. It has the potential to run long term and can provide base-load energy, at the same time it helps to reduce the greenhouse gas emissions. It is found almost everywhere on earth. The resources of geothermal energy range from shallow ground to hot water or hot rock, which can be found few kilometers below the surface and even deeper to magma where the temperature is extremely high. Since its discovery from the ancient times, many technologies have been developed to understand or use geothermal energy properly.  This report is based on literature survey of geothermal energy compared to other energy sources in terms of construction, supply energy and the advantage-disadvantage of the system. From this study it has been found that geothermal power plant does not need external fuel to operate, that’s why the price of geothermal energy does not go up like oil and gas, in USA the cost of geothermal electricity ranges from $0.06 to $0.10 per kilowatt-hour and besides it is one of the most clean, reliable and renewable energy source, which is environment friendly and cheaper than other energy sources.

Page generated in 0.0725 seconds