• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Machining System Performance through designed-in Damping : Modelling, Analysis and Design Solutions

Daghini, Lorenzo January 2012 (has links)
With advances in material technology, allowing, for instance, engines to withstand higher combustion pressure and consequently improving performance, comes challenges to productivity. These materials are, in fact, more difficult to machine with regards to tool wear and especially machine tool stability. Machining vibrations have historically been one of the major limitations to productivity and product quality and the cost of machining vibration for cylinder head manufacturing has been estimated at 0.35 euro per part. The literature review shows that most of the research on cutting stability has been concentrating on the use of the stability limits diagram (SLD), addressing the limitations of this approach. On the other hand, research dedicated to development of machine tool components designed for chatter avoidance has been concentrating solely on one component at the time. This thesis proposes therefore to extend the stability limits of the machining system by enhancing the structure’s damping capability via a unified concept based on the distribution of damping within the machining system exploiting the joints composing the machine tool structure. The design solution proposed is based on the enhancement of damping of joint through the exploitation of viscoelastic polymers’ damping properties consciously designed as High Damping Interfaces (HDI). The tool-turret joint and the turret-lathe joint have been analysed. The computational models for dimensioning the HDI’s within these joints are presented in the thesis and validated by the experiments. The models offer the possibility of consciously design damping in the machining system structure and balance it with regards to the needed stiffness. These models and the experimental results demonstrate that the approach of enhancing joint damping is viable and effective. The unified concept of the full chain of redesigned components enables the generation of the lowest surface roughness over the whole range of tested cutting parameters. The improved machining system is not affected by instability at any of the tested cutting parameters and offers an outstanding surface quality. The major scientific contribution of this thesis is therefore represented by the proposed unified concept for designing damping in a machining system alongside the models for computation and optimisation of the HDIs. From the industrial application point of view, the presented approach allows the end user to select the most suitable parameters in terms of productivity as the enhanced machine tool system becomes less sensitive to stability issues provoked by difficult-to-machine materials or fluctuations of the work material properties that may occur in ordinary production processes. / <p>QC 20120413</p> / DampComat / Production 4 micro / FFI Robust Machining
2

Vibration Control for Chatter Suppression with Application to Boring Bars

Pratt, Jon Robert Jr. 18 December 1997 (has links)
A mechatronic system of actuators, sensors, and analog circuits is demonstrated to control the self-excited oscillations known as chatter that occur when single-point turning a rigid workpiece with a flexible tool. The nature of this manufacturing process, its complex geometry, harsh operating environment, and poorly understood physics, present considerable challenges to the control system designer. The actuators and sensors must be rugged and of exceptionally high bandwidth and the control must be robust in the presence of unmodeled dynamics. In this regard, the qualitative characterization of the chatter instability itself becomes important. Chatter vibrations are finite and recognized as limit cycles, yet modeling and control efforts have routinely focused only on the linearized problem. The question naturally arises as to whether the nonlinear stability is characterized by a jump phenomenon. If so, what does this imply for the "robustness" of linear control solutions? To answer our question, we present an advanced hardware and control system design for a boring bar application. Initially, we treat the cutting forces merely as an unknown disturbance to the structure which is essentially a cantilevered beam. We then approximate the structure as a linear single-degree-of-freedom damped oscillator in each of the two principal modal coordinates and seek a control strategy that reduces the system response to general disturbances. Modal-based control strategies originally developed for the control of large flexible space structures are employed; they use second-order compensators to enhance selectively the damping of the modes identified for control. To attack the problem of the nonlinear stability, we seek a model that captures some of the behavior observed in experiments. We design this model based on observations and intuition because theoretical expressions for the complex dynamic forces generated during cutting are lacking. We begin by assuming a regenerative chatter mechanism, as is common practice, and presume that it has a nonlinear form, which is approximated using a cubic polynomial. Experiments demonstrate that the cutting forces couple the two principal modal coordinates. To obtain the jump phenomena observed experimentally, we find it necessary to account for structural nonlinearies. Gradually, using experimental observation as a guide, we arrive at a two-degree-of-freedom chatter model for the boring process. We analyze the stability of this model using the modern methods of nonlinear dynamics. We apply the method of multiple scales to determine the local nonlinear normal form of the bifurcation from static to dynamic cutting. We then find the subsequent periodic motions by employing the method of harmonic balance. The stability of these periodic motions is analysed using Floquet theory. Working from a model that captures the essential nonlinear behavior, we develop a new post-bifurcation control strategy based on quench control. We observe that nonlinear state feedback can be used to control the amplitude of post-bifurcation limit cycles. Judicious selection of this nonlinear state feedback makes a supplementary open-loop control strategy possible. By injecting a harmonic force with a frequency incommensurate with the chatter frequency, we find that the self-excited chatter can be exchanged for a forced vibratory response, thereby reducing tool motions. / Ph. D.

Page generated in 0.0819 seconds