• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanisms and consequences of boron segregation at austenite grain boundaries in advanced high strength steels / Mécanismes et conséquences de la ségrégation du bore aux joints de grains austénitiques dans les aciers à très haute résistance

Inacio Da Rosa, Gregory 31 January 2018 (has links)
L’objectif de cette thèse est d’aboutir à une meilleure compréhension des mécanismes de ségrégation du bore aux joints de grains austénitiques (γGB) et de leur effet sur la décomposition de l’austénite. En effet, l’addition de très faibles quantités de bore comme élément d’alliage permet d’augmenter de manière remarquable la résistance mécanique des aciers à très haute résistance. Cet effet est lié à l’état du bore aux γGBs qui décale la cinétique de décomposition de l’austénite.Tout d’abord, la distribution du bore dans la microstructure a été identifiée de manière très précise à l’aide des analyses de la même zone par Nano-SIMS et par MEB. De plus, le couplage de la sonde atomique tomographique et du Nano-SIMS a apporté une meilleure quantification de l’état du bore dans la microstructure. Ces études ont été réalisées après différents traitements thermiques qui ont été conçus spécifiquement pour étudier séparément chaque mécanisme. L’ensemble de ces résultats permet d’écarter la contribution de la ségrégation hors équilibre et confirme la présence d’un équilibre local entre les γGBs et la solution solide dans leurs voisinages. Par conséquent, le niveau de ségrégation du bore aux γGBs est contrôlé par l’état de précipitation des borures qui définit la concentration du bore en solution solide.Par ailleurs, des mesures de DRX in situ et de dilatomètrie ont été effectuées afin de suivre les cinétiques de formation de la bainite. Les résultats montrent que la cinétique de formation de la bainite est retardée en augmentant la quantité de bore ségrégé, par contre l’augmentation de la taille de grain austénitique l’accélère. / The aim of this thesis is to lead to a better understanding of the mechanisms of boron segregation at austenite grain boundaries (γGB) and its effect on the austenite decomposition. Indeed, the small quantity of boron as alloying element remarkably improves the mechanical resistance of the advanced high strength steels. This effect is related to the boron state at γGBs, which delays the kinetics of austenite decomposition.The boron distribution in the microstructure was precisely identified thanks to the analyses of the same field by using correlative nano-SIMS and SEM. In addition, the coupling of APT and nano-SIMS provided a better quantification of the boron state in the microstructure. These studies were performed after different heat treatments, which were specifically designed to study separately each mechanism. The results excludes the contribution of non-equilibrium segregation mechanism on boron segregation at γGBs and confirm the local equilibrium between the γGBs and the solid solution at the γGBs vicinity. Consequently, the level of boron segregation at γGBs is controlled by boride precipitation, which controls the concentration of boron in solid solution.Measurements of in situ XRD and the dilatometry were performed in order to follow the kinetics of bainite formation. The specific heat treatments were applied before bainite formation in order to study the effect of boron segregated amount at γGBs and the austenite grain size. These results show that the kinetics of bainitic transformation is delayed by the increase of boron segregated amount. Whereas, the increasing of austenite grain size accelerates the kinetics of bainitic transformation.
2

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.
3

A study of laser-arc hybrid weldability of nickel-base INCONEL 738 LC superalloy

Ola, Oyedele 08 1900 (has links)
Precipitation strengthened nickel-base superalloys, such as IN 738, are very difficult to weld by fusion welding techniques due to their high susceptibility to heat-affected zone (HAZ) intergranular liquation cracking. An improvement in weldability could be realized by the deployment of innovative welding processes and/or the modification of the materials’ microstructural characteristics. Laser-arc hybrid welding is a relatively new welding process that appears to possess great potentials for joining the difficult-to-weld nickel-base superalloys. The research described in this Ph.D. dissertation was initiated to perform a systematic and comprehensive study of the cracking susceptibility of nickel-base IN 738 superalloy welds made by laser-arc hybrid welding process, and how to minimize it by using a combination of pre-weld microstructural modification and the application of various welding filler alloys. Laser-arc hybrid welding produced a desirable weld geometry in IN 738 Superalloy. Cracking did not occur exclusively in the fusion zone. Analysis of the fusion zone material using EPMA, SEM, TEM and EBSD revealed elemental partitioning pattern, the presence of secondary solidification reaction constituents and the grain structure of the fusion zone. Non-equilibrium liquation of various second phases that were present in the alloy prior to welding contributed to intergranular liquation in the HAZ that consequently resulted in extensive HAZ intergranular cracking. A very significant reduction in HAZ intergranular liquation cracking was achieved by the use of an industrially deployable and effective pre-weld thermal processing procedure developed during this research work. This novel procedure, designated as FUMT, was developed on the basis of the control of both boride formation and intergranular boron segregation in the pre-weld material. Propensity for HAZ intergranular liquation cracking in the weldments was also observed to vary depending on the Al+Ti+Nb+Ta concentration of the weld metal produced by different filler alloys, which can be attributed to variation in the extent of precipitation hardening in the weld metals. The newly developed FUMT treatment procedure, coupled with the selection of an appropriate type of filler alloy, is effective in reducing HAZ intergranular cracking both during laser-arc hybrid welding and during post-weld heat treatment (PWHT) of the laser-arc hybrid welded IN 738 superalloy.

Page generated in 0.0877 seconds