Spelling suggestions: "subject:"boronic acid"" "subject:"choronic acid""
1 |
A kinetic investigation of boronic acid/diol interactions and pattern-based recognition of [alpha]-chiral carboxylatesCollins, Byron Elliot 15 September 2010 (has links)
Amine-functionalized boronic acids have revolutionized the field of carbohydrate sensing in recent years. Capable of rapidly and reversibly forming cyclic boronate esters with of 1,2- and 1,3-diols, polyols, catechols, and α-hydroxycarboxylic acids, boronic acids have found applications spanning from lipid transport to Hydrogen fuel cells. The majority of the work presented in this dissertation will be aimed at gaining a better understanding of the Boron-Nitrogen interactions in ortho-aminomethyl functionalized boronic acids. Chapter 2 will provide an overview of the mechanistic understanding of boronic acid-diol interactions with a special focus on amine-functionalized boronic acids. Chapters 3 – 5 report the progress made by the Anslyn group to develop a more thorough understanding of Boron-Nitrogen interactions and how they affect boronate ester formation. The first introductory chapter will present a the recent advances that have been made in the development of pattern-based sensor systems. Finally, chapter 6 will present the synthesis of a series of bicycloguanidinium hosts, which will be used in a sensing array for chiral carboxylates. / text
|
2 |
Boronic acids : structural and mechanistic studies and application as macromolecular sensing systemsMetola, Pedro 09 February 2015 (has links)
Boronic acids, particularly those that carry an ortho-aminomethyl group, have been extensively utilized in the field of molecular recognition in recent years thanks to their ability to reversibly bind to a wide variety of polyol substrates. They have been shown to form cyclic boronate esters rapidly upon reaction with 1,2- and 1,3-diols, catechols, carbohydrates and hydroxycarboxylic acids, making them attractive as potential sensing units. While they have found broad application in this forum, the mechanism by which they work is still up for debate. This work begins in Chapter 1 with a review of the fundamentals of ¹¹B NMR spectroscopy and its application on the analysis of boronic acid-containing systems. The focus of Chapter 2 turns toward systems with an o-iminomethylphenylboronic acid moiety. This species can be formed easily through a three-component assembly, though physical understanding of this complex lags behind. With the fundamentals of ¹¹B NMR spectroscopy detailed previously, the results obtained when utilizing this technique to study both the structure and mode of interaction in these species will be presented. In Chapter 3 we give a comprehensive review of the data and conclusions that have been published by different groups about one of the most successful fluorescent sugar sensors of this kind, first introduced by Seiji Shinkai in 1994. Additionally, it delineates the experimental results obtained by our group when attempting to answer some of the remaining questions. In Chapter 4 we report the use of the aforementioned multi-component assembly as an enantioselective sensor for α-chiral primary amines. Using circular dichroism, the ee% of these analytes could be accurately determined with this system. Additionally, enantio- and chemodiscrimination was possible by employing chemometric tools like PCA and LDA. Finally, Chapter 5 is a compilation of efforts to expand the use of these sensing systems into synthetic organic chemistry research labs. In collaboration with Xumu Zhang at Rutgers University, we have implemented a previously developed system to analyze the product of an asymmetric hydrogenation of an imine to create a chiral amine. A proof of concept study on a novel automated circular dichroism plate reader prototype aimed to increasing sample throughput was completed at New York University with Professor Bart Kahr. / text
|
3 |
Piezoelectric quartz crystal monitoring of surface interactionsPavey, Karl David January 1997 (has links)
Quartz crystal microbalances, (QCM), are high frequency oscillators, capable of nanogram mass resolution in both air and liquid environments. ~ work has produced data showing the feasibility of using the QCM for monitoring interactions in liquids for several types of systems and has allowed comparison with surface plasmon resonance (SPR) where appropriate. Bulk phase changes in viscosity and density have been used in the development of a QCM agglutination assay for the Staphylococcus epidermidis infection which has reduced diagnosis periods by a factor of twelve. Direct interactions at the crystal electrode have been employed when studying bacterial adhesion to protein treated gold surfaces. It was shown that suspensions containing as little as I x 10-2 cellsml-1 could be recognised using the QCM system. A novel boronic acid - vicinal diol interaction mechanism has been employed as a model for receptor-ligand binding. New boronic acid disulphide and short chain thiol derivatives have been synthesised and the formation of self assembled monolayers of the~e compounds monitored, both on the gold QCM electrodes and on the gold films of SPR slides, the assembly mechanism being shown to fit a two stage model shown by other workers for straight chain thiols. Monolayer orientation was confirmed using SPR, by the binding of a range of saccharides and the diol containing enzyme cofactor nicotinamide adenine dinucleotide. The enzymes lactate dehydrogenase and glucose-6-phosphate dehydrogenase have been shown to interact with bound NAD using both a novel flow injection system with QCM detection and SPR. The low molecular weight saccharide, glucose, was shown to bind reversibly to GDH on the surface of a QCM and the potential for kinetic stu4ies recognised. This was taken one step further with a preliminary investigation into sensing within real fluids, using diluted and spiked human seruin samples.
|
4 |
Boronate esters in oligosaccharide synthesisBelogi, Gianluca January 2000 (has links)
No description available.
|
5 |
Synthesis and application of novel boronates containing intramolecular N-B interactionsKelly, Andrew January 2008 (has links)
No description available.
|
6 |
Design, synthesis and evaluation of fluorescent sensors for the detection of saccharide and reactive oxygen speciesSun, Xiaolong January 2015 (has links)
Reactive oxygen species (ROS) and reactive nitrogen species (RNS), saccharide (i.e. monosaccharide, disaccharide and polysaccharide), are continuously generated, transformed and consumed in the living systems. As a consequence of their significant value towards human health in aerobic life, it is very important and has drawn much attention in the chemical and biological sensing of the species. It is our long-standing interest in the recognition of monosaccharide (e.g. glucose) through exploration of various boronate-based fluorescence probes, thus, based on the previous work, we started on the design, synthesis and evaluation of novel fluorescent chemosensors for breakthrough discoveries in the detection of saccharide and ROS selectively and specifically, which are made up of different receptors and diverse singaling fluorophores, e.g. anthracene, coumarin, fluorescein, naphthalimine. Firstly, “integrated” and “insulated” boronate-based fluorescent probes (2-naphthylboronic acid and N-Methyl-o-(aminomethyl)phenylboronic acid) have been evaluated for the detection of hydrogen peroxide in the presence of saccharides (i.e. D-fructose). In the presence of D-fructose the initial fluorescence intensity of the “insulated” system is much higher and produces a blue visible fluorescence. Based on the experimental observation above in the boronate-based systems (i.e. B-N bond protection), a new water-soluble boronate-based fluorescent probe was designed and evaluated for the detection of peroxynitrite (much stronger oxidant) in the presence of D-fructose. The enhanced fluorescence of probe when bound with D-fructose was switched off in the presence of peroxynitrite. While, other reactive oxygen/nitrogen species led to only slight fluorescence decreases due to protection by the internal N-B interaction. The interaction of probe with D-fructose not only strengthens the fluorescence signal, but also protects the boronic acid to oxidation by other ROS/RNS. Therefore, under conditions generating various ROS/RNS, the boronate-based sugar complex preferentially reacts with peroxynitrite (ONOO−). The sensor displays good “on-off” response towards peroxynitrite both in RAW 264.7 cells and HeLa cells. A new ICT (internal charge transfer) sensing system was developed for the detection of hydrogen peroxide and peroxynitrite. The probe displayed an enhanced fluorescence change when bound with D-fructose due to the prolonged N-B distance. The fluorescence intensity of the probe dropped down both in the detection of H2O2 and ONOO− which was attributed to the oxidation of arylboronic acid even though in the presence of D-fructose. Using the self-assembly of aromatic boronic acids with Alizarin Red S (ARS), we developed a new chemo/biosensor for the selective detection of peroxynitrite. Phenylboronic acid, benzoboroxole and 2-(N, N-dimethylaminomethyl) phenylboronic acid were employed to bind with ARS to form the complex probes. In particular the ARS-NBA system with a high binding affinity can preferably react with peroxynitrite over hydrogen peroxide and hypochlorite due to the protection of the boron via the solvent-insertion B-N interaction. Our simple system produces a visible naked-eye colorimetric change and on-off fluorescence response towards peroxynitrite. By coupling a chemical reaction that leads to an indicator displacement, we have developed a new sensing strategy, referred to herein as RIA (Reaction-based Indicator displacement Assay). Next, we developed a novel class of simple materials for sensing monosaccharides by the functionalization of graphene oxide (GO) with boronate-based fluorescence probes. The composite materials were characterized by atomic force microscopy, Raman spectroscopy, and UV-vis/fluorescence spectroscopy. The strong fluorescence of the fluorescence probes is quenched in the presence of GO through fluorescence resonance energy transfer (FRET). The BA@GO composite sensors formed provide a useful platform for fluorogenic detection of monosaccharides based on the strong affinity between the boronic acid receptor and monosaccharides. The BA@GO composite sensor displayed a “turn-on” fluorescence response with a good linear relationship towards fructose over a range of other saccharides. Next, new water-soluble copper (II) complex fluorescence probes were developed and evaluated for the detection of nitric oxide and nitroxyl in a physiological condition. A significant fluorescence “off-on” response displayed by using the copper (II) complex for the detection of NO and HNO (Na2N2O3 as a donor). Under pathological conditions generating various ROS/RNS, the copper (II) complex fluorescent probe preferentially reacts with NO/HNO over other reactive oxygen species. The dual-analyte recognitions of the simple, sensitive probe were further applied in living cell for the exogenous NO/HNO. In the following work, we synthesised a phosphorous-based compound for the detection of HNO which derived from Angeli’s salt in a biological condition. Significantly, it displayed a high sensitivity and selectivity toward HNO over other various ROS species, especially NO since they have a similar chemical property. The underlying mechanism was attributed to the cleavage of C-O bond induced by Staudinger Ligation.
|
7 |
Carbohydrate directed photoaffinity labellingFowle, Chris January 2018 (has links)
Glycoproteins have diverse and essential roles within biological systems. They are formed by enzymatic addition of saccharides to proteins during, or shortly after, translation. However, saccharides can also react with proteins non-enzymatically, a process termed glycation, which can cause impaired function and improper folding. Glycated proteins further react to form advanced glycation end-products, which have been implicated in the pathogenesis and progress of many diseases. Due to this pathological effect, glycation has been studied as a potential biomarker of these diseases. Photoaffinity labelling is a technique that is used to investigate the structure, and presence, of biological molecules; a precedent exists for its use in the study of carbohydrates in biological systems. Chapter 1 outlines the background of this thesis exploring previous studies of glycation, its effects, and methods used in recognition and photoaffinity labelling. Chapter 2 details the design and synthesis of a novel photoaffinity probe, and the optimisation of this synthesis. The target molecule was successfully produced and simpler alternatives to the initial synthetic route with similar yields are discussed. In Chapter 3 the use of the photoaffinity probe is studied. Labelling trials were performed on three proteins: human serum albumin (HSA), macrophage migration inhibitory factor (MIF), and casein. Mass spectrometry showed that the experiments with both HSA and MIF were successful, while the procedure appeared to lead to degradation of casein. Additionally, our work into developing techniques for identifying labelled samples is detailed. A diol-doped electrophoresis gel was not successful created, however, staining protein samples in polyacrylamide gel electrophoresis with curcumin showed promise. Chapter 4 explores the electrochemistry of the photoaffinity probe and details the use of the probe in functionalising a fluorine doped tin oxide (FTO) glass electrode. Cyclic voltammograms of Alizarin Red S (ARS), obtained using a treated electrode, suggest that surface functionalisation was successful.
|
8 |
Design and Synthesis of a Boronic Acid Sensor to Study Carbohydrate Binding Using SERSPetersen, Paul Russell 01 August 2010 (has links)
Carbohydrates are known to play a large number of significant roles in various biological and pathological processes such as cancer metastasis and cellular communication. This is because of their ability to bind a wide range of hosts within the human body such as proteins and viruses. Due to these important interactions, carbohydrate sensing has long been a main focus of research. These research strategies have included the use of aptamers, non-covalent interactions, and boronic acid-based receptors. Boronic acid-based sensors are of particular interest due to their selectivity for 1,2- or 1,3-diols. Within these boronic acid-based studies, a large variety of techniques were employed for detection including different fluorescent, electrochemical, polymeric, and colorimetric studies, as well as various surface bound sensors. One type of technique that has rarely been applied is Surface Enhanced Raman Spectroscopy or SERS. This strategy would be beneficial as it provides information about functional groups, which would aid in the identification of the bound sugar. In this thesis, we present work based on the development of a boronic acid-based carbohydrate receptor that will be used to study carbohydrate binding through SERS. The receptor design includes an aryl boronic acid for carbohydrate recognition, a nitrogen atom in close proximity to the boron center to enhance binding, and a terminal thiol for attachment to a metal surface for SERS. This sensor will be used to study the binding of different saccharides for sensing applications.
|
9 |
Development of Boronic Acid-Based ChemosensorsJin, Shan 21 April 2009 (has links)
It is well known that boronic acids can bind with diols and can be further applied as chemosensors for biomolecules such as carbohydrates and dopamine. Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents.
|
10 |
Design and Synthesis of a Boronic Acid Sensor to Study Carbohydrate Binding Using SERSPetersen, Paul Russell 01 August 2010 (has links)
Carbohydrates are known to play a large number of significant roles in various biological and pathological processes such as cancer metastasis and cellular communication. This is because of their ability to bind a wide range of hosts within the human body such as proteins and viruses. Due to these important interactions, carbohydrate sensing has long been a main focus of research. These research strategies have included the use of aptamers, non-covalent interactions, and boronic acid-based receptors. Boronic acid-based sensors are of particular interest due to their selectivity for 1,2- or 1,3-diols. Within these boronic acid-based studies, a large variety of techniques were employed for detection including different fluorescent, electrochemical, polymeric, and colorimetric studies, as well as various surface bound sensors. One type of technique that has rarely been applied is Surface Enhanced Raman Spectroscopy or SERS. This strategy would be beneficial as it provides information about functional groups, which would aid in the identification of the bound sugar. In this thesis, we present work based on the development of a boronic acid-based carbohydrate receptor that will be used to study carbohydrate binding through SERS. The receptor design includes an aryl boronic acid for carbohydrate recognition, a nitrogen atom in close proximity to the boron center to enhance binding, and a terminal thiol for attachment to a metal surface for SERS. This sensor will be used to study the binding of different saccharides for sensing applications.
|
Page generated in 0.0663 seconds