• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Host Cell Attachment by Lyme Disease and Relapsing Fever Spirochetes: A Dissertation

Benoit, Vivian M. 16 December 2010 (has links)
Host cell attachment by pathogenic bacteria can play very different roles in the course of infection. The pathogenic spirochetes Borrelia hermsii and Borrelia burgdorferi sensu lato which cause relapsing fever and Lyme disease, respectively, are transmitted by the bite of infected ticks. After transmission, these spirochetes can cause systemic infection. Relapsing fever spirochetes remain largely in the bloodstream causing febrile episodes, while Lyme disease will often colonize a variety of tissues, such as the heart, joint and nervous system, resulting in a chronic multisystemic disorder. Borrelia species have the ability to bind to various cell types, a process which plays a crucial role in pathogenesis and may influence spirochetal clearance from the bloodstream. Colonization of multiple tissues and cell types is likely promoted by the ability to bind to components found in target tissues, and many B. burgdorferi adhesins have been shown to promote attachment to a wide variety of cells and extracellular matrix components. Different Lyme disease strains have been shown to preferentially colonize certain tissues, although the basis of this tissue tropism is not well understood. In this study we found that among different Lyme disease strains, allelic variation of the adhesin DbpA contributes to variation in its in vitro binding activities raising the possibility that this variation contributes to tissue tropism in vivo. In studying B. hermsii infection, we found evidence by both histological and fluorescence in situ hybridization (FISH) analysis of tissues that indicated that red blood cells were removed by tissue resident macrophages in infected mice. Spirochetes in the spleen and liver were often visualized associated with RBCs, lending support to the hypothesis that direct interaction of B. hermsii spirochetes with RBCs leads to clearance of bacteria from the bloodstream. Our findings indicate that host cell attachment play a key role in the establishment of Lyme disease infection, and in contrast contributes to the clearance of relapsing fever infection.

Page generated in 0.1101 seconds