• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

study of the generalized spin-boson model =: 廣義自旋--玻色子模型硏究. / 廣義自旋--玻色子模型硏究 / A study of the generalized spin-boson model =: Guang yi zi xuan--bo se zi mo xing yan jiu. / Guang yi zi xuan--bo se zi mo xing yan jiu

January 1999 (has links)
Yung Lit Hung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves p. [122]-124). / Text in English; abstracts in English and Chinese. / Yung Lit Hung. / Abstract --- p.i / Acknowledgements --- p.ii / List of Figures --- p.v / List of Tables --- p.vii / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Dissipative two-state system --- p.3 / Chapter 2.1 --- Introduction --- p.3 / Chapter 2.2 --- A two-state system viewed as a spin --- p.4 / Chapter 2.3 --- Rotation of spin operators --- p.5 / Chapter 2.4 --- Dissipative two state system --- p.7 / Chapter 2.5 --- The model in consideration --- p.8 / Chapter 2.5.1 --- gk= 0 --- p.8 / Chapter 2.5.2 --- Δ0 = 0 --- p.8 / Chapter 2.5.3 --- dispersionless phonon case with constant coupling --- p.10 / Chapter 3 --- Linearized spin-wave approximation and mean-field method --- p.13 / Chapter 3.1 --- Holstein Primakoff Transformation --- p.13 / Chapter 3.2 --- Application of linearized spin-wave approxmation to our system --- p.14 / Chapter 3.3 --- Mean-field method --- p.24 / Chapter 4 --- Variational method for optical phonons with constant coupling --- p.35 / Chapter 4.1 --- Introduction --- p.35 / Chapter 4.2 --- Variational Principle --- p.35 / Chapter 4.3 --- Variational Principle applied to optical phonon case --- p.36 / Chapter 4.4 --- Results --- p.41 / Chapter 4.5 --- Conclusion --- p.54 / Chapter 5 --- Variational method for acoustic phonons with ohmic dissipation --- p.56 / Chapter 5.1 --- Introduction --- p.56 / Chapter 5.2 --- Variational Principle applied to acoustic phonon case --- p.57 / Chapter 5.3 --- μk= 0 case --- p.59 / Chapter 5.4 --- Search for any μk≠ 0 solution --- p.60 / Chapter 5.5 --- Results --- p.62 / Chapter 5.6 --- Conclusion --- p.70 / Chapter 6 --- Coupled Cluster Method --- p.72 / Chapter 6.1 --- Introduction --- p.72 / Chapter 6.2 --- Coupled Cluster Method --- p.73 / Chapter 6.2.1 --- Zeroth Level --- p.74 / Chapter 6.2.2 --- First Level --- p.74 / Chapter 6.2.3 --- The bra-state --- p.75 / Chapter 6.3 --- Coupled cluster method applied to our system --- p.76 / Chapter 6.4 --- Coupled cluster method applied to optical phonon case --- p.78 / Chapter 6.4.1 --- First Level --- p.79 / Chapter 6.4.2 --- Second Level --- p.81 / Chapter 6.5 --- Coupled cluster method applied to acoustic phonon case --- p.90 / Chapter 6.5.1 --- First Level --- p.90 / Chapter 6.5.2 --- Second Level --- p.92 / Chapter 6.6 --- Conclusion --- p.98 / Chapter 7 --- Spin system interacting with a photon field --- p.99 / Chapter 7.1 --- Rotation wave approximation --- p.100 / Chapter 7.2 --- Spin system interacting with an optical field --- p.101 / Chapter 7.3 --- Heisenberg equation of motion --- p.102 / Chapter 7.4 --- Brogoliubov transformation approach --- p.104 / Chapter 7.5 --- Conclusion --- p.106 / Chapter A --- Supplementary calculations --- p.107 / Chapter A.1 --- First level calculation for optical photon --- p.107 / Chapter A.2 --- Second level calculation for optical photon --- p.111 / Chapter A.3 --- First level calculation for acoustic photon --- p.114 / Chapter A.4 --- Second level calculation for acoustic photon --- p.118 / Bibliography --- p.121

Page generated in 0.1035 seconds