• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioenergietics of the bottlenose dolphin (Tursiops truncatus) / Bioenergetics of the bottlenose dolphin (Tursiiops truncatus)

Magee, Michelle Coyne January 1995 (has links)
Title printed with error on title page: "Bioenergietics of the bottlenose dolphin (Tursiops truncatus)" / Thesis (Ph. D.)--University of Hawaii at Manoa, 1995. / Includes bibliographical references (leaves 131-143). / Microfiche. / xii, 143 leaves, bound 29 cm
2

Sound localization and auditory perception by an echolocating bottlenose dolphin (Tursiops truncatus)

Branstetter, Brian K January 2005 (has links)
Thesis (Ph. D.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references. / Also available by subscription via World Wide Web / xi, 102 leaves, bound ill. 29 cm
3

Identifying and characterizing the immune cell populations of Atlantic bottlenose dolphins (Tursiops truncatus)

Unknown Date (has links)
Recently, there has been an increase in marine mammal mortalities, most commonly Atlantic bottlenose dolphins, Tursiops truncatus, which is an alarming indication of the health status of the marine ecosystem. Studies have demonstrated that some free-ranging dolphins exhibit a suppressed immune system possibly because of exposure to contaminants or infectious microorganisms. However, this research has been limited due to a lack of commercially available marine-specific antibodies. Therefore, the first chapter of this thesis aims to identify cross-reactive terrestrial-specific antibodies that could be used to phenotype and compare the immune cell populations of dolphins under human care and free-ranging dolphins. The second chapter aims to utilize terrestrial-specific growth factors and dendritic cell (DC) surface markers to generate, characterize, and compare ex vivo DCs from peripheral blood mononuclear cells (PBMCs) of dolphins under human care and free-ranging dolphins. In summary, I have identified differences within the PBMCs and ex vivo generated DCs of dolphins under human care and free-ranging dolphins that could potentially shed light on the impact of environmental contaminants and infectious microorganisms on immune cells which could lead to increased morbidity and mortality. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.1032 seconds