Spelling suggestions: "subject:"bouchaud trap model"" "subject:"souchaud trap model""
1 |
Convergência de modelos de armadilhas no hipercubo / Convergence of trap models in the hypercubeLima, Paulo Henrique de Souza 22 February 2007 (has links)
Derivamos resultados para o Modelo de Armadilhas de Bouchaud no hipercubo a baixa temperatura. Este é um passeio aleatório simples simétrico em tempo contínuo que espera um tempo exponencial com taxa aleatória com distribuição no domínio de atração de uma lei estável de expoente menor do que 1. Os resultados recaem sobre o processo limite chamado K-processo, basicamente, um processo markoviano em um espaço de estados enumerável que entra em qualquer conjunto finito com distribuição uniforme. / We derive results for the Bouchaud trap model in the hypercube at low temperature. This is a continuous-time simple symmetric random walk on hypercube that waits a exponetial time with a random rate with distribution in the domain of attraction of a stable law of exponent lower than 1. The results arise to a scaling limit called k-process, roughly, a Markov process in a denumerable state space which enters finite sets with uniform distribution.
|
2 |
Convergência de modelos de armadilhas no hipercubo / Convergence of trap models in the hypercubePaulo Henrique de Souza Lima 22 February 2007 (has links)
Derivamos resultados para o Modelo de Armadilhas de Bouchaud no hipercubo a baixa temperatura. Este é um passeio aleatório simples simétrico em tempo contínuo que espera um tempo exponencial com taxa aleatória com distribuição no domínio de atração de uma lei estável de expoente menor do que 1. Os resultados recaem sobre o processo limite chamado K-processo, basicamente, um processo markoviano em um espaço de estados enumerável que entra em qualquer conjunto finito com distribuição uniforme. / We derive results for the Bouchaud trap model in the hypercube at low temperature. This is a continuous-time simple symmetric random walk on hypercube that waits a exponetial time with a random rate with distribution in the domain of attraction of a stable law of exponent lower than 1. The results arise to a scaling limit called k-process, roughly, a Markov process in a denumerable state space which enters finite sets with uniform distribution.
|
Page generated in 0.318 seconds