Spelling suggestions: "subject:"boundary integral"" "subject:"boundary jntegral""
21 |
A new approach to boundary integral simulations of axisymmetric droplet dynamics / 軸対称液滴運動の境界積分シミュレーションに対する新しいアプローチKoga, Kazuki 24 November 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22861号 / 情博第740号 / 新制||情||127(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)教授 青柳 富誌生, 教授 磯 祐介, 教授 田口 智清 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
22 |
Boundary integral equation methods for the calculation of complex eigenvalues for open spaces / 開空間の複素固有値計算に対する境界積分方程式法Misawa, Ryota 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20513号 / 情博第641号 / 新制||情||111(附属図書館) / 京都大学大学院情報学研究科複雑系科学専攻 / (主査)教授 西村 直志, 教授 磯 祐介, 准教授 吉川 仁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
23 |
Finite Element-Boundary Integral Method And Its Application To Implantable Antenna Design For Wireless Data TelemetryPvillalta, Jose S 05 August 2006 (has links)
A non-stationary Krylov subspace based iterative solver for the three dimensional finite element-boundary integral (FE-BI) method for implantable antennas is presented. The present method numerically solves the frequency domain Maxwell?s equations in the variational form to formulate the finite element solution using hexahedral discretization elements in conjunction with the appropriate boundary integral equations. Four different solvers are used to investigate the convergence behavior of the FE-BI technique on the design of the antennas. The scheme is then applied to two miniaturized planar inverted-F antennas (PIFA): a serpentine and a spiral. The antennas are designed for the Medical Implant Communication Service (MICS) band (402-405 MHz). Validations and comparisons are done using High Frequency Electromagnetic Simulation (HFSS) software. Return loss, gain, near fields, and far fields are presented for the serpentine and spiral antenna.
|
24 |
SHAPE OPTIMIZATION OF ELLIPTIC PDE PROBLEMS ON COMPLEX DOMAINSNiakhai, Katsiaryna January 2013 (has links)
<p>This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady state heat conduction described by elliptic partial differential equations (PDEs) and involving a one dimensional cooling element represented by an open contour. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least square sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using the conjugate gradient algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus combined with adjoint analysis. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary integral formulation. A number of computational aspects of the proposed approach is discussed and optimization results obtained in several test problems are presented.</p> / Master of Science (MSc)
|
25 |
Theoretical and numerical aspects of wave propagation phenomena in complex domains and applications to remote sensing / Aspects théoriques et numériques des phénomènes de propagation d’ondes dans domaines de géométrie complexe et applications à la télédétectionRamaciotti Morales, Pedro 17 October 2016 (has links)
Cette thèse s'inscrit dans le sujet des opérateurs intégraux de frontière définis sur le disque unitaire en trois dimensions, leurs relations avec les problèmes externes de Laplace et Helmholtz, et leurs applications au préconditionnement des systèmes linéaires obtenus en utilisant la méthode des éléments finis de frontière.On décrit d'abord les méthodes intégrales pour résoudre les problèmes de Laplace et de Helmholtz en dehors des objets à frontière régulière lipschitzienne, et en dehors des surfaces bidimensionnelles ouvertes dans un espace tridimensionnel. La formulation intégrale des problèmes de Laplace et de Helmholtz pour ces cas est décrite formellement. La mise en oeuvre d'une méthode numérique utilisant la méthode des éléments finis de frontière est également décrite. Les avantages et les défis inhérents à la méthode sont abordés : la complexité du calcul numérique (de mémoire et algorithmique) et le mal conditionnement inhérentes à des systèmes linéaires associés.Dans une deuxième partie on expose une technique optimale de préconditionnement (indépendante de la discrétisation) sur la base des opérateurs intégraux de frontière. On montre comment cette technique est facilement réalisable dans le cas de problèmes définis en dehors d'un objet régulier à frontière lipschitzienne, mais qu'elle pose des problèmes quand ils sont définis en dehors d'une surface ouverte dans un espace tridimensionnel. On montre que les opérateurs intégraux de frontière associés à la résolution des problèmes de Dirichlet et Neumann définis en dehors des surfaces ont des inverses bien définis. On montre également que ceux-ci pourraient conduire à des techniques de préconditionnement optimales, mais que ses formes explicites ne sont pas faciles à obtenir. Ensuite, on montre une méthode pour obtenir de tels opérateurs inverses de façon explicite lorsque la surface sur laquelle ils sont définis est un disque unitaire dans un espace tridimensionnel. Ces opérateurs inverses explicites seront, cependant, en forme des séries, et n'auront pas une adaptation immédiate pour leur utilisation dans des méthodes des éléments finis de frontière.Dans une troisième partie on montre comment certaines modifications aux opérateurs inverses mentionnés permettent d'obtenir des expressions variationnelles explicites et fermées, non plus sous la forme des séries, en conservant certaines caractéristiques importantes pour l'effet de préconditionnement cherché. Ces formes explicites sont en effet applicables aux méthodes des éléments finis frontière. On obtient des expressions variationnelles précises et on propose des calculs numériques pour leur utilisation avec des éléments finis frontière. Ces méthodes numériques sont testées en utilisant différentes identités obtenues dans la théorie développée, et sont ensuite utilisées pour produire des matrices préconditionnantes. Leur performance en tant que préconditionneurs de systèmes linéaires associés à des problèmes de Laplace et Helmholtz à l'extérieur du disque est testée. Enfin, on propose extension de cette méthode pour couvrir les cas de surfaces diverses. Ceci est illustré et étudié dans les cas précis des problèmes extérieurs à des surfaces en forme de carré et en forme de L dans un espace tridimensionnel. / This thesis is about some boundary integral operators defined on the unit disk in a three-dimensional spaces, their relation with the exterior Laplace and Helmholtz problems, and their application to the preconditioning of the systems arising when solving these problems using the boundary element method.We begin by describing the so-called integral method for the solution of the exterior Laplace and Helmholtz problems defined on the exterior of objects with Lipschitz-regular boundaries, or on the exterior of open two-dimensional surfaces in a three-dimensional space. We describe the integral formulation for the Laplace and Helmholtz problem in these cases, their numerical implementation using the boundary element method, and we discuss its advantages and challenges: its computational complexity (both algorithmic and memory complexity) and the inherent ill-conditioning of the associated linear systems.In the second part we show an optimal preconditioning technique (independent of the chosen discretization) based on operator preconditioning. We show that this technique is easily applicable in the case of problems defined on the exterior of objects with Lipschitz-regular boundary surfaces, but that its application fails for problems defined on the exterior of open surfaces in three-dimensional spaces. We show that the boundary integral operators associated with the resolution of the Dirichlet and Neumann problems defined on the exterior of open surfaces have inverse operators, and that these operators would provide optimal preconditioners, but that they are not easily obtainable. Then we show a technique to explicitly obtain such inverse operators for the particular case when the open surface is the unit disk in a three-dimensional space. Their explicit inverse operators will be given, however, in the form of series, and will not be immediately applicable in the use of boundary element methods.In the third part we show how some modifications to these inverse operators allow us to obtain variational explicit and closed form expressions, no longer expressed as series, but also conserve nonetheless some characteristics that are relevant for their preconditioning effect. These explicit and closed forms expressions are applicable in boundary element methods. We obtain precise variational expressions for them and propose numerical schemes to compute the integrals needed for their use with boundary elements. The proposed numerical methods are tested using identities available within the developed theory and then used to build preconditioning matrices. Their performance as preconditioners for linear systems is tested for the case of the Laplace and Helmholtz problems for the unit disk. Finally, we propose an extension of this method that allows for the treatment of cases of open surfaces other that the disk. We exemplify and study this extension in its use on a square-shaped and an L-shaped surface screen in a three-dimensional space.
|
26 |
Viscoelastic Mobility Problem Using A Boundary Element MethodNhan, Phan-Thien, Fan, Xi-Jun 01 1900 (has links)
In this paper, the complete double layer boundary integral equation formulation for Stokes flows is extended to viscoelastic fluids to solve the mobility problem for a system of particles, where the non-linearity is handled by particular solutions of the Stokes inhomogeneous equation. Some techniques of the meshless method are employed and a point-wise solver is used to solve the viscoelastic constitutive equation. Hence volume meshing is avoided. The method is tested against the numerical solution for a sphere settling in the Odroyd-B fluid and some results on a prolate motion in shear flow of the Oldroyd-B fluid are reported and compared with some theoretical and experimental results. / Singapore-MIT Alliance (SMA)
|
27 |
Fast numerical methods for high frequency wave scatteringTran, Khoa Dang 03 July 2012 (has links)
Computer simulation of wave propagation is an active research area as wave phenomena are prevalent in many applications. Examples include wireless communication, radar cross section, underwater acoustics, and seismology. For high frequency waves, this is a challenging multiscale problem, where the small scale is given by the wavelength while the large scale corresponds to the overall size of the computational domain. Research into wave equation modeling can be divided into two regimes: time domain and frequency domain. In each regime, there are two further popular research directions for the numerical simulation of the scattered wave. One relies on direct discretization of the wave equation as a hyperbolic partial differential equation in the full physical domain. The other direction aims at solving an equivalent integral equation on the surface of the scatterer. In this dissertation, we present three new techniques for the frequency domain, boundary integral equations. / text
|
28 |
Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite IntervalSriskandasingam, Mayuran 04 October 2021 (has links)
No description available.
|
29 |
Fast Evaluation of Near-Field Boundary Integrals using Tensor Approximations: Fast Evaluation of Near-Field Boundary Integralsusing Tensor ApproximationsBallani, Jonas 10 October 2012 (has links)
In this dissertation, we introduce and analyse a scheme for the fast evaluation of integrals stemming from boundary element methods including discretisations of the classical single and double layer potential operators. Our method is based on the parametrisation of boundary elements in terms of a d-dimensional parameter tuple. We interpret the integral as a real-valued function f depending on d parameters and show that f is smooth in a d-dimensional box. A standard interpolation of f by polynomials leads to a d-dimensional tensor which is given by the values of f at the interpolation points. This tensor may be approximated in a low rank tensor format like the canonical format or the hierarchical format. The tensor approximation has to be done only once and allows us to evaluate interpolants in O(dr(m+1)) operations in the canonical format, or O(dk³ + dk(m + 1)) operations in the hierarchical format, where m denotes the interpolation order and the ranks r, k are small integers. In particular, we apply an efficient black box scheme in the hierarchical tensor format in order to adaptively approximate tensors even in high dimensions d with a prescribed (but heuristic) target accuracy. By means of detailed numerical experiments, we demonstrate that highly accurate integral values can be obtained at very moderate costs.
|
30 |
Fast High-order Integral Equation Solvers for Acoustic and Electromagnetic Scattering ProblemsAlharthi, Noha 18 November 2019 (has links)
Acoustic and electromagnetic scattering from arbitrarily shaped structures can be numerically characterized by solving various surface integral equations (SIEs). One of the
most effective techniques to solve SIEs is the Nyström method. Compared to other existing methods,the Nyström method is easier to implement especially when the geometrical discretization is non-conforming and higher-order representations of the geometry and unknowns are desired. However,singularities of the Green’s function are more difficult to”manage”since they are not ”smoothened” through the use of a testing function.
This dissertation describes purely numerical schemes to account for different orders of
singularities that appear in acoustic and electromagnetic SIEs when they are solved by a high-order Nyström method utilizing a mesh of curved discretization elements. These schemes make use of two sets of basis functions to smoothen singular integrals: the grid robust high-order Lagrange and the high-order Silvester-Lagrange interpolation basis functions. Numerical results comparing the convergence of two schemes are presented.
Moreover, an extremely scalable implementation of fast multipole method (FMM) is developed to efficiently (and iteratively) solve the linear system resulting from the discretization of the acoustic SIEs by the Nyström method. The implementation results in O(N log N) complexity for high-frequency scattering problems. This FMM-accelerated solver can handle N =2 billion on a 200,000-core Cray XC40 with 85% strong scaling efficiency.
Iterative solvers are often ineffective for ill-conditioned problems. Thus, a fast direct (LU)solver,which makes use of low-rank matrix approximations,is also developed. This solver relies on tile low rank (TLR) data compression format, as implemented in the hierarchical computations on many corearchitectures (HiCMA) library. This requires to taskify the underlying SIE kernels to expose fine-grained computations. The resulting asynchronous execution permit to weaken the artifactual synchronization points,while mitigating the overhead of data motion. We compare the obtained performance results of our TLRLU factorization against the state-of-the-art dense factorizations on shared
memory systems. We achieve up to a fourfold performance speedup on a 3D acoustic problem with up to 150 K unknowns in double complex precision arithmetics.
|
Page generated in 0.038 seconds