Spelling suggestions: "subject:"boundary layer"" "subject:"boundary mayer""
611 |
Numerical Studies of Wall Effects of Laminar FlamesAndrae, Johan January 2001 (has links)
<p>Numerical simulations have been done with the CHEMKINsoftware to study different aspects of wall effects in thecombustion of lean, laminar and premixed flames in anaxisymmetric boundary-layer flow.</p><p>The importance of the chemical wall effects compared to thethermal wall effects caused by the development of the thermaland velocity boundary layer has been investigated in thereaction zone by using different wall boundary conditions, walltemperatures and fuel/air ratios. Surface mechanisms include acatalytic surface (Platinum), a surface that promotesrecombination of active intermediates and a completely inertwall with no species and reactions as the simplest possibleboundary condition.</p><p>When hydrogen is the model fuel, the analysis of the resultsshow that for atmospheric pressure and a wall temperature of600 K, the surface chemistry gives significant wall effects atthe richer combustion case (f=0.5), while the thermal andvelocity boundary layer gives rather small effects. For theleaner combustion case (f=0.1) the thermal and velocityboundary layer gives more significant wall effects, whilesurface chemistry gives less significant wall effects comparedto the other case.</p><p>For methane as model fuel, the thermal and velocity boundarylayer gives significant wall effects at the lower walltemperature (600 K), while surface chemistry gives rather smalleffects. The wall can then be modelled as chemically inert forthe lean mixtures used (f=0.2 and 0.4). For the higher walltemperature (1200 K) the surface chemistry gives significantwall effects.</p><p>For both model fuels, the catalytic wall unexpectedlyretards homogeneous combustion of the fuel more than the wallthat acts like a sink for active intermediates. This is due toproduct inhibition by catalytic combustion. For hydrogen thisoccurs at atmospheric pressure, but for methane only at thehigher wall temperature (1200 K) and the higher pressure (10atm).</p><p>As expected, the overall wall effects (i.e. a lowerconversion) were more pronounced for the leaner fuel-air ratiosand at the lower wall temperatures.</p><p>To estimate a possible discrepancy in flame position as aresult of neglecting the axial diffusion in the boundary layerassumption, calculations have been performed with PREMIX, alsoa part of the CHEMKIN software. With PREMIX, where axialdiffusion is considered, steady, laminar, one-dimensionalpremixed flames can be modelled. Results obtained with the sameinitial conditions as in the boundary layer calculations showthat for the richer mixtures at atmospheric pressure the axialdiffusion generally has a strong impact on the flame position,but in the other cases the axial diffusion may beneglected.</p><p><strong>Keywords:</strong>wall effects, laminar premixed flames,platinum surfaces, boundary layer flow</p> / QC 20100504
|
612 |
Near surface atmospheric flow over high latitude glaciersParmhed, Oskar January 2004 (has links)
<p>In this thesis various descriptions of the near surface atmospheric flow over a high latitude glacier is used in an effort to increase our understanding of the basic flow dynamics there.</p><p>Through their contribution to sea-level change, mountain glaciers play a significant role in Earth’s climate system. Properties of the near surface atmospheric flow are important for understanding glacier response to climate change.</p><p>Here, the near surface atmospheric flow is studied from several perspectives including the effects of both rotation and slope. Rotation is an important aspect of most atmospheric flows and its significance for mesoscale flows have gained recognition over the last years. Similarly, the very stable boundary layer (VSBL) has lately gained interest. Within a VSBL over sloping terrain katabatic flow is known to be usual and persistent. For the present thesis a combination of numerical and simple analytical models as well as observations from the Vatnajökull glacier on Iceland have been used. The models have continuously been compared to available observations. Three different approaches have been used: linear wave modeling, analytic modeling of katabatic flow and of the Ekman layer, and numerical simulations of the katabatic flow using a state of the art mesoscale model. The analytic models for the katabatic flow and the Ekman layer used in this thesis both utilizes the WKB method to allow the eddy diffusivity to vary with height. This considerably improves the results of the models. Among other findings it is concluded that: a large part of the flow can be explained by linear theory, that good results can be obtained for surface energy flux using simple models, and that the very simple analytic models for the katabatic flow and the Ekman layer can perform adequately if the restraint of constant eddy diffusivity is relieved.</p>
|
613 |
Numerical simulation of the unsteady two-dimensional flow in a time-dependent doubly-connected domain.Chen, Yen-Ming. January 1989 (has links)
Two-dimensional flow in a viscous incompressible fluid, generated by a circular cylinder executing large-amplitude rectilinear oscillations in a plane perpendicular to its axis and parallel to one of the sides of a surrounding rectangular box filled with incompressible fluid is studied numerically. The circular cylinder moves back and forth through its own wake, resulting in an extremely complex flow field. For ease of implementing boundary conditions, a numerically generated body-fitted coordinate system is used. At each time step, the physical domain is doubly-connected, and a cut is introduced in order to map it into a rectangular computational domain. A body-fitted grid is generated by solving a pair of Laplace equations with a simple grid spacing control method which preserves the essential one-to-one property of the mapping. A finite difference/pseudo-spectral technique is used in this work to solve the Navier-Stokes equations in velocity-vorticity formulation. The time integration of the vorticity transport equation is handled by a fully explicit three-level Adams-Bashforth method. The two Poisson equations for the velocity components are 11-banded and block-diagonal in form, and are solved by a preconditioned biconjugate gradient routine. An integral constraint on the vorticity field is used to determine the boundary vorticity that simultaneously satisfies the no-slip and no-penetration conditions. The surface vorticity is uniquely determined by a general solution procedure developed in this study which is valid for flows over multiple solid bodies. With this approach, the physical process of vorticity generation on the solid boundary is properly simulated and the principle of vorticity conservation is satisfied. Results for various test cases and the complex vortex shedding phenomena generated by an oscillating circular cylinder are presented and discussed.
|
614 |
Numerical Investigation of the Role of Free-Stream Turbulence on Boundary-Layer Separation and Separation ControlBalzer, Wolfgang January 2011 (has links)
The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. Understanding of the physical mechanisms and hydrodynamic instabilities that are associated with laminar separation and the formation of laminar separation bubbles (LSBs) is key for the design and development of effective and efficient active flow control (AFC) devices. For the present work, laminar separation and its control were investigated numerically by employing highly-accurate direct numerical simulations (DNS).For a LSB on a curved plate, the primary and secondary instability of the uncontrolled flow were investigated. An inviscid Kelvin-Helmholtz (KH) instability was found to be responsible for the shedding of predominantly two-dimensional (2D) vortices. The onset of transition was caused by temporally-growing three-dimensional (3D) disturbances inside the separated region, which were supported by elliptical and hyperbolic secondary instabilities. The hyperbolic instability was demonstrated to be of absolute/global nature. High-amplitude forcing using pulsed vortex generator jets and 2D time-periodic blowing was found to exploit the KH instability and lead to a significant reduction in bubble size. In addition, the 2D forcing was found to suppress the secondary instabilities such that transition to turbulence was delayed.The role of free-stream turbulence (FST) in the transition process was investigated for a LSB on a flat plate. FST was shown to cause the formation of streamwise-elongated streaks inside the boundary layer. For the uncontrolled LSB, increasing the FST levels led to accelerated transition and a reduction in bubble size. The stage of linear disturbance growth due to the inviscid KH instability was not ``bypassed''. Flow control by means of 2D periodic excitation was found to remain effective, since it could exploit the KH instability and suppress secondary absolute instabilities. Transition was initiated by an interaction of the 2D wave introduced by the forcing and the streamwise boundary-layer streaks. The interaction led to a spanwise modulation of the 2D wave, which was amplified due to a convective elliptical instability.
|
615 |
Turbulent mixing and dispersion in environmental flows.Venayagamoorthy, Subhas Karan. January 2002 (has links)
Stably stratified flows are common in the environment such as in the atmospheric·
boundary layer, the oceans, lakes and estuaries. Understanding mixing and dispersion
in these flows is of fundamental importance in applications such as the prediction of
pollution dispersion and for weather and climate prediction/models.
Mixing efficiency in stratified flows is a measure of the proportion of the turbulent kinetic
energy that goes into increasing the potential energy of the fluid by irreversible mixing.
This can be important for parameterizing the effects of mixing in stratified flows. In this
research, fully resolved direct numerical simulations (DNS) of the Navier-Stokes
equations are used to study transient turbulent mixing events. The breaking of internal
waves in the atmosphere could be a source of such episodic events in the
environment. The simulations have been used to investigate the mixing efficiency
(integrated over the duration of the event) as a function of the initial turbulence
Richardson number Ri = N2L2/U2, where N is the buoyancy frequency, L is the
turbulence length scale, and u is the turbulence velocity scale. Molecular effects on the
mixing efficiency have been investigated by varying the Prandtl number Pr = V/K, where
v is the viscosity and K is the scalar diffusivity. Comparison of the DNS results with grid
turbulence experiments has been carried out. There is broad qualitative agreement
between the experimental and DNS results.· However the experiments suggest a
maximum mixing efficiency of 6% while our DNS gives values about five times higher.
Reasons for this discrepancy are investigated. The mixing efficiency has also been
determined using linear theory. It is found that the results obtained for the very stable
cases converge on those obtained from DNS suggesting that strongly stratified flows
exhibit linear behaviour.
Lagrangian analysis of mixing is fundamental in understanding turbulent diffusion and
mixing. Dispersion models such as that of Pearson, Puttock & Hunt (1983) are based
on a Lagrangian approach. A particle-tracking algorithm (using a cubic spline
interpolation scheme following Yeung &Pope, 1988) was developed and incorporated
into the DNS code to enable an investigation into the fundamental aspects of mixing
and diffusion from a Lagrangian perspective following fluid elements. From the
simulations, the ensemble averaged rate of mixing as a function of time indicates
clearly that nearly all the mixing in these flows occurs within times of order 3 Vu. The
mean square vertical displacement statistics show how the stable stratification severely
inhibits the vertical displacement of fluid elements but has no effect on displacements in the transverse direction. This is consistent with the Pearson, Puttock & Hunt model.
The important link that asymptotic value of the mean square vertical displacement is a
measure of the total irreversible mixing that has occurred in the flow is made. However
the results show that the change in density of the fluid elements is only weakly
correlated to the density fluctuations during the time when most of the mixing occurs,
which contradicts a key modeling assumption of the PPH theory. Improvements to the
parameterization of this mixing are investigated.
Flow structures in stably stratified turbulence were examined using flow visualization
software. The turbulence structure for strong stratification resembles randomly
scattered pancakes that are flattened in the horizontal plane. It appears that
overturning motions are the main mechanism by which mixing occurs in these flows. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2002.
|
616 |
Dispersion by time-varying atmospheric boundary layersTaylor, Alexander Charles January 2012 (has links)
The periods of time-varying turbulence in the atmospheric boundary layer, i.e.\ the morning and evening transitions, are often overlooked or highly idealised by dispersion models. These transitions make up a significant portion of the diurnal cycle and are known to affect the spread of pollution due to the properties of turbulence in the residual and stable layers, resulting in phenomena such as lofting, trapping, and fumigation.\\ Two main simulation techniques are presented for the purpose of modelling the dispersion of passive tracers in both convective and evening transitional boundary layers: Lagrangian stochastic (LS) modelling for 1D, inhomogeneous, non-stationary turbulence; and large-eddy simulation (LES) with a particle model tracing pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent sub-grid scale motions.\\ In the convective boundary layer, LS models more accurately representing the state of turbulence, and including the effect of skewness, are shown to produce dispersion results in closer agreement with LES. By considering individual particle trajectories, a reflective top boundary in LS models is shown to produce un-physical, sharp changes in velocity and position. By applying a correction to the vertical velocity variance based on representing the stable potential temperature gradient above the boundary layer, particles are contained within the boundary layer in a physically accurate way. \\ An LS model for predicting dispersion in time-varying, skewed turbulence is developed and tested for various particle releases in transitional boundary layers with different rates of decay, showing an improvement in accuracy compared with previous LS models. Further improvement is made by applying a correction to the vertical velocity variance to represent the effect of a positive potential temperature gradient developing over the course of the transition. Finally, a developing stable boundary layer is shown to have a significant trapping effect on particles released near the surface. \\
|
617 |
Wind and atmospheric stability characteristics over the Baltic SeaSvensson, Nina January 2016 (has links)
In recent years there has been an increase in offshore wind energy, which poses the need for accurate wind speed estimates in the marine environment, especially in coastal areas where most wind turbines will be placed. This thesis is focused on the Baltic Sea, which is a small, semi-enclosed sea where land-sea interaction play an important role in explaining the wind patterns. Mesoscale model simulations can be used to study the marine environment, where observations are often scarce. In this thesis the Weather Research and Forecasting (WRF) model is used. In the first study simulations show that stable stratification over sea is very common in spring and summer and is associated with an increase in low-level jet occurrence and increased wind shear below 200 m, at heights where wind turbines are erected. The model performance in stable conditions is evaluated against aircraft measurements using several boundary layer parametrization schemes, and it is shown that the low-level jet height and strength is not accurately captured with any of the parametrizations. In the second study the advection of land features is investigated. From simulations, aircraft observations and satellite images it is shown that boundary layer rolls are created in the convective boundary layer over land, and advected several tens of kilometres out over sea surface, despite the stable stratification, where convective turbulence dissipates quickly. The occurrence of boundary layer rolls gives rise to horizontal wind speed variations of several meters per second over distances of kilometres, which can increase the uncertainty of short term wind speed forecasts in coastal areas with offshore flow. It is shown that mesoscale processes in and above the marine boundary layer are important in modifying the wind field in distances of at least 100 km from the coast and that models still need to be improved in order to capture these conditions. / Under de senaste decennierna har vindkraftsutbyggnaden ökat till havs, vilket innebär att det krävs tillförlitliga vindhastighetsuppskattningar över hav, särskilt i kustområden, där de flesta vindturbinerna kommer att placeras. Den här avhandlingen kommer att fokusera på Östersjön, vilket är ett relativt litet hav omgivet av landmassor, där land-hav-interaktion har en stor påverkan på vindmönstren över havet. Mesoskaliga modeller kan användas för att studera den lägre delen av den marina atmosfären. I den här avhandlingen används modellen "Weather Research and Forecasting" (WRF). I den första studien visar simuleringar att stabila förhållanden över havet är vanligt förekommande under sommar och vår, och sker i samband med en ökad förekomst av vindmaxima på låg höjd och ökad vindskjuvning under 200 m - alltså på höjder där vindkraftverk förekommer. Modellen, med flertalet gränskiktsparametriseringar, utvärderas för stabila fall mot flygplansmätningar, och resultaten visar att styrkan och höjden för vindmaxima är antingen över- eller underskattade oavsett parametrisering. I den andra studien undersöks advektiva fenomen. Simuleringar, flyplansobservationer och satellitbilder visar att avlånga rullvirvlar uppstår i det konvektiva gränsskiktet över land och advekteras flera tiotals kilometer över hav ut från kusten. Detta trots stabila förhållanden över havet, där den konvektiva turbulensen snabbt dör ut. Rullvirvlarna ger upphov till variationer i horisontell vindhastighet på flera meter per sekund över avstånd på några kilometer, vilket kan öka osäkerheten hos korttidsprognoser för vind när det är blåser från land. Sammanfattningsvis har det har visats att mesoskaliga processer i och ovanför det marina gränsskiktet har en stor inverkan på vindfältet åtminstone 100 km från kusten, och modeller behöver fortfarande förbättras för att kunna fånga dessa företeelser. / StandUp for Wind
|
618 |
Observed and simulated temporal and spatial variations of gap outflow regionCherrett, Robin Corey. 09 1900 (has links)
This study focuses on understanding the development of gap outflow and the air-sea interaction processes during the 26 February 2004 Tehuano event over the Gulf of Tehuantepec, Mexico. The Navy's Coupled Ocean Atmospheric Mesoscale Prediction System (COAMPS) was used to simulate the gap wind event and was compared to satellite, scatterometer, and coincident in situ aircraft and dropsondes measurements collected during the Gulf of Tehuantepec Experiment (GOTEX). Comparisons between model results and the observations suggest that COAMPS performed the best in simulating the outflow jet within 200 km offshore, although the simulated surface fluxes deviated significantly from the observations. This is the region where the dominant dynamical forcing arises from the coastal topography. Larger discrepancies were found in model result further away from the coast, especially to the south and southeast of the gulf where the air-sea exchange became increasingly important. Detailed inter-comparison between COAMPS and the aircraft measurements at 40 m also shows the strong spatial and temporal variations of boundary layer thermodynamics and turbulence, which require improved characterization of the sea surface temperature, upper air conditions, and initial conditions for COAMPS. The results also point to the needs for improved surface flux parameterization, particularly in high wind conditions.
|
619 |
Remote sensing of the refractive environment above the marine stratocumulus-topped boundary layerDerley, Dennis T. 09 1900 (has links)
400m), and overestimates their corresponding trapping layer depth by ~20%. For deeper boundary layer cases the duct strength was well represented, however, the trapping layer depth was over estimated by ~ 33%.
|
620 |
Numerical investigation of aeroacoustic interaction in the turbulent subsonic fow past an open cavity / Calcul et analyse de l'interaction aéroacoustique dans un écoulement turbulent subsonique affleurant une cavitéGandhi, Thangasivam 10 November 2010 (has links)
L'objectif de cette thèse est d'étudier numériquement l'aéroacoustique à faibles nombres de Mach(M inf 0.3) pour un écoulement de couche limite turbulente épaisse affleurant une cavité, sur la base de simulations numériques à grandes échelles (LES). Un profil de vitesse en loi puissance et pour une couche limite d'équilibre ont servi comme conditions en entrée du domaine de calcul. La couche limite d'équilibre, sans et avec gradient de pression adverse, a été résolue par une approche asymptotique basée sur une formulation déficitaire avec un nouveau modèle de longueur de mélange. Ce dernier a été validé pour améliorer les comparaisons avec les expériences et les simulations numériques directes. Des simulations LES ont permis de regarder l'influence de l'épaisseur de la couche limite turbulente amont sur le mode d'oscillation d'une cavité L/D=4. Un accord satisfaisant avec les expériences d'Haigermoser et l'émergence du mode de cisaillement a été obtenu pour la vitesse amont de 5.8m/s. Le mode était de type sillage pour les deux autres cas tests (20et40m/s). Finalement, une simulation 3D a montré que le mode de sillage est un artefact du calcul 2D. En utilisant l'analogie de Lighthill-Curle et les champs de pression in stationnaire issus de la simulation, nous avons déterminé les niveaux de pression sonore dans le champ proche et lointain. Conformément aux expériences d'Haigermoser, une faible directivité vers l'amont est trouvée. Le mode de sillage influence très fortement les niveaux de pression acoustique. / The objective of this thesis is to study numerically the aeroacoustics of low Mach number (M inf 0.3) fow with thick turbulent boundary layer past a cavity based on Large Eddy Simulation (LES). Velocity profiles from power law and equilibrium turbulent boundary layer were imposed as inlet conditions on the computational domain. The equilibrium turbulent boundary layer profles (zero and adverse pressure gradient) have been generated using a symptotic approach with an improved mixing length model. A good agreement is observed between the computed boundary layer profiles and the profiles obtained from experiments and direct numerical simulations. LES results present the infuence of the thickness of the incoming turbulent boundary layers on the mode of oscillation in the shallow cavity of L/D=4. An agreement with the experiments of Haigermoser and the shear mode have been found for the upstream velocity 5.8m/s. Wake mode was observed for the other two test cases at 20 and 40m/s. A 3D cavity simulation is performed to show that the wake mode observed in the 2D calculations is an artifact. The hydrodynamic pressure feld obtained from the 2D simulation is used as an input to the acoustic analogy (Lighthill-Curle's analogy), to compute the acoustic pressure feld at the near and far feld of the cavities. Conforming the experiments of Haigermoser, a weak directivity of sound propagation was observed. Shear mode infuences the sound pressure levels strongly.
|
Page generated in 0.0417 seconds