• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Organic Solar Cell incorporating Bromined-P3HT¡JP3HT¡JPCBM as Active Layer

Chen, Deng-wei 18 August 2010 (has links)
Based on the solar cell¡¦s four characteristic parameter open-circuit voltage (Voc) makes the discussion.The study of the relation VOC¡¦s paper uses empirical formula. VOC¡¦s formula is ¡§VOC=(1/e)(¡UEDonorHOMO¡W-¡UEAcceptorLUMO¡W)-0.3V¡¨. We can know that VOC related to donor material¡¦s HOMO and acceptor material¡¦s LUMO, if we need a high VOC, it can change the structure of donor material to have higher HOMO value, as well as the acceptor material have lower LUMO value. Our active layer except poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-Butyric acid methyl ester (PCBM), the third material was blended to discuss their effect on the VOC. Two kind of different bromined-P3HT (Br-P3HT) were used 40% and 100% bromined-P3HT to blend in active layer. Their Three materials blended under the different weight percent and the basic device configurations in this study was ITO / PEDOT : PSS / P3HT : Br-P3HT : PCBM / Al , efficiency was measured under AM 1.5G 100mW/cm2 illumination. When blended Br-P3HT(100%) in the active layer, VOC increased from 0.6V to 0.68V and the surface roughness makes short-circuit current and fill factor, increased make lower power conversion efficiency. When blended Br-P3HT(40%) into the active layer, not only can increase VOC to 0.66V, but influence the short-circuit current and the fill factor. The power conversion efficiency changed from 2.20% to 2.46%.

Page generated in 0.1223 seconds