• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 31
  • 12
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 224
  • 224
  • 224
  • 78
  • 59
  • 57
  • 52
  • 49
  • 46
  • 37
  • 35
  • 33
  • 32
  • 31
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Manipulating Paradigm and Attention via a Mindfulness Meditation Training Program Improves P300-Based BCI.

Berry, Daniel Ryan 17 August 2011 (has links) (PDF)
To date, only one study has situationally bolstered attentional resources in an effort to improve P300-BCI performance. The current study implements a 4-week Mindfulness Meditation Training Program (MMTP) as a nonmedicinal means to increase concentrative attention and to reduce lapses of attention; MMTP is expected to improve P300-BCI performance by enhancing attentional resources and reducing distractibility. A second aim is to test the efficacy of the checkerboard paradigm (CBP) against the standard row-column paradigm (RCP). Online results show that MMTP had greater accuracies than CTRL and that CBP outperformed the RCP. MMTP participants provided greater amplitude positive target responses, but these differences were not statistically significant. CBP had greater positive amplitude peaks and negative peaks than RCP. The discussion focuses on potential benefits of MMTP for P300-based BCIs, provides further support for the construct validity of mindfulness, and addresses future directions of the translational applicability of MMTP to in-home settings.
112

P300-Based BCI Performance Prediction through Examination of Paradigm Manipulations and Principal Components Analysis.

Schwartz, Nicholas Edward 18 December 2010 (has links) (PDF)
Severe neuromuscular disorders can produce locked-in syndrome (LIS), a loss of nearly all voluntary muscle control. A brain-computer interface (BCI) using the P300 event-related potential provides communication that does not depend on neuromuscular activity and can be useful for those with LIS. Currently, there is no way of determining the effectiveness of P300-based BCIs without testing a person's performance multiple times. Additionally, P300 responses in BCI tasks may not resemble the typical P300 response. I sought to clarify the relationship between the P300 response and BCI task parameters and examine the possibility of a predictive relationship between traditional oddball tasks and BCI performance. Both waveform and component analysis have revealed several task-dependent aspects of brain activity that show significant correlation with the user's performance. These components may provide a fast and reliable metric to indicate whether the BCI system will work for a given individual.
113

A Novel P300-Based Brain-Computer Interface Stimulus Presentation Paradigm: Moving Beyond Rows and Columns

Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., Sellers, Eric W. 01 July 2010 (has links)
Objective: An electroencephalographic brain-computer interface (BCI) can provide a non-muscular means of communication for people with amyotrophic lateral sclerosis (ALS) or other neuromuscular disorders. We present a novel P300-based BCI stimulus presentation - the checkerboard paradigm (CBP). CBP performance is compared to that of the standard row/column paradigm (RCP) introduced by Farwell and Donchin (1988). Methods: Using an 8 × 9 matrix of alphanumeric characters and keyboard commands, 18 participants used the CBP and RCP in counter-balanced fashion. With approximately 9-12 min of calibration data, we used a stepwise linear discriminant analysis for online classification of subsequent data. Results: Mean online accuracy was significantly higher for the CBP, 92%, than for the RCP, 77%. Correcting for extra selections due to errors, mean bit rate was also significantly higher for the CBP, 23 bits/min, than for the RCP, 17 bits/min. Moreover, the two paradigms produced significantly different waveforms. Initial tests with three advanced ALS participants produced similar results. Furthermore, these individuals preferred the CBP to the RCP. Conclusions: These results suggest that the CBP is markedly superior to the RCP in performance and user acceptability. Significance: The CBP has the potential to provide a substantially more effective BCI than the RCP. This is especially important for people with severe neuromuscular disabilities.
114

Toward a High-Throughput Auditory p300-Based Brain-Computer Interface

Klobassa, D. S., Vaughan, T. M., Brunner, P., Schwartz, N. E., Wolpaw, J. R., Neuper, C., Sellers, Eric W. 01 July 2009 (has links)
Objective: Brain-computer interface (BCI) technology can provide severely disabled people with non-muscular communication. For those most severely disabled, limitations in eye mobility or visual acuity may necessitate auditory BCI systems. The present study investigates the efficacy of the use of six environmental sounds to operate a 6 × 6 P300 Speller. Methods: A two-group design was used to ascertain whether participants benefited from visual cues early in training. Group A (N = 5) received only auditory stimuli during all 11 sessions, whereas Group AV (N = 5) received simultaneous auditory and visual stimuli in initial sessions after which the visual stimuli were systematically removed. Stepwise linear discriminant analysis determined the matrix item that elicited the largest P300 response and thereby identified the desired choice. Results: Online results and offline analyses showed that the two groups achieved equivalent accuracy. In the last session, eight of 10 participants achieved 50% or more, and four of these achieved 75% or more, online accuracy (2.8% accuracy expected by chance). Mean bit rates averaged about 2 bits/min, and maximum bit rates reached 5.6 bits/min. Conclusions: This study indicates that an auditory P300 BCI is feasible, that reasonable classification accuracy and rate of communication are achievable, and that the paradigm should be further evaluated with a group of severely disabled participants who have limited visual mobility. Significance: With further development, this auditory P300 BCI could be of substantial value to severely disabled people who cannot use a visual BCI.
115

Decoding spatial location of attended audio-visual stimulus with EEG and fNIRS

Ning, Matthew H. 17 January 2023 (has links)
When analyzing complex scenes, humans often focus their attention on an object at a particular spatial location in the presence of background noises and irrelevant visual objects. The ability to decode the attended spatial location would facilitate brain computer interfaces (BCI) for complex scene analysis. Here, we tested two different neuroimaging technologies and investigated their capability to decode audio-visual spatial attention in the presence of competing stimuli from multiple locations. For functional near-infrared spectroscopy (fNIRS), we targeted dorsal frontoparietal network including frontal eye field (FEF) and intra-parietal sulcus (IPS) as well as superior temporal gyrus/planum temporal (STG/PT). They all were shown in previous functional magnetic resonance imaging (fMRI) studies to be activated by auditory, visual, or audio-visual spatial tasks. We found that fNIRS provides robust decoding of attended spatial locations for most participants and correlates with behavioral performance. Moreover, we found that FEF makes a large contribution to decoding performance. Surprisingly, the performance was significantly above chance level 1s after cue onset, which is well before the peak of the fNIRS response. For electroencephalography (EEG), while there are several successful EEG-based algorithms, to date, all of them focused exclusively on auditory modality where eye-related artifacts are minimized or controlled. Successful integration into a more ecological typical usage requires careful consideration for eye-related artifacts which are inevitable. We showed that fast and reliable decoding can be done with or without ocular-removal algorithm. Our results show that EEG and fNIRS are promising platforms for compact, wearable technologies that could be applied to decode attended spatial location and reveal contributions of specific brain regions during complex scene analysis.
116

Improving decoding in intracortical brain-machine interfaces

Stetner, Michael E. 11 January 2010 (has links)
No description available.
117

Coadaptive Decoding of Muscle Activations
 from Motor Cortex for the Real-Time Control of an Upper Limb Neuroprosthesis

Kalodimos, Harrison Anthony 26 June 2012 (has links)
No description available.
118

Interactions between hippocampal and cerebellar theta oscillations during cerebellar theta-contingent trace eyeblink conditioning acquisition and extinction in the rabbit.

Hoffmann, Loren C. 21 April 2014 (has links)
No description available.
119

Intracortical Brain-Computer Interfaces: Modeling the Feedback Control Loop, Improving Decoder Performance, and Restoring Upper Limb Function with Muscle Stimulation

Willett, Francis R. 06 June 2017 (has links)
No description available.
120

Design of a Modified P300 Speller System Based on Prediction by Partial Matching Language Model

Wang, Mengxia 15 October 2012 (has links)
No description available.

Page generated in 0.0672 seconds