• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Systematic Studies of Kir and TRP Channel mRNAs in the Norepinephrenergic Neurons of the Locus Coeruleus

Tadepalli, Sakuntala Jyothirmayee 07 May 2011 (has links)
Neurons in the Locus coeruleus (LC) play an important role in the central CO2 chemosensitivity. However, the molecular mechanisms for neuronal CO2 chemosensitivity remain unclear. To demonstrate the expression of pH/CO2 sensitive ion channels, we screened the inward rectifier K+ channels (Kir) and transient receptor protein (TRP) channels, as parallel studies in this lab suggested that certain Kir and TRP channels are involved in neuronal responses to high levels of CO2. Our results showed that several members of the Kir and TRP channel families were robustly expressed in the LC neurons at the mRNA level. Of particular interest are TRPC5, Kir4.1 and Kir5.1 channels that are all pH-sensitive. The rich expression of various pH-sensitive Kir and TRP channels suggests that these ion channels are likely to play a role in the chemosensitivity of LC neurons.
2

Locus Coeruleus Neurons in Autonomic Regulation of Breathing: Insight from a Mouse Model of Rett Syndrome

Zhang, Xiaoli 26 April 2010 (has links)
Patients with Rett Syndrome (RTT) show severe breathing disorders in addition to other neuropathological features, contributing to the high incidence of sudden unexplained death and abnormal brain development. However, the molecular and cellular mechanisms underlying the breathing disorders are still unknown. Recent studies indicate that the dysfunction of brainstem norepinephrine (NE) systems are closely associated with breathing disorders in RTT patients as well as its mice model, the Mecp2-null (Mecp2─/Y) mice. This as well as the fact the major group of NE-ergic neurons in the locus coeruleus (LC) is CO2 chemosensitive suggests that the breathing disorders in RTT may be related these LC neurons. To test this hypothesis, we took a multidisciplinary approach and systematically studied these neurons using molecular biology, in-vitro brain slices, acutely dissociated neurons, immunocytochemistry, and whole-body plethysmograph. To facilitate the electrophysiological studies, we developed a new strain of transgenic mice with GFP expression selectively in the LC neurons of both WT and Mecp2─/Y mice. Breathing activity of the Mecp2─/Y mice showed selective disruptions in responses to mild hypercapnia. The defect was alleviated with the NE uptake blocker desipramine, suggesting the involvement of NE in central CO2 chemosensitivity. In the LC region, the expressions of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) at both protein and mRNA levels reduced by ~50% in Mecp2─/Y mice. No evidence was found for selective deficiency in TH- or DBH-containing neurons in Mecp2─/Y mice, and no major loss of NE-ergic LC cells were found, indicating that the NE defect is likely to result from deficient expression of biosynthetic enzymes rather than a loss of neurons in the LC. Several intrinsic membrane properties were abnormal in Mecp2─/Y LC neurons in comparison to wild type cells, including stronger inward rectification, shorter time constant, extended action potential duration, smaller amplitude of medium afterhyperpolarization (AHP) and over-expression of fast AHP. These abnormalities seem to be associated with the altered K+ and Na+ currents. Most importantly, Mecp2─/Y LC neurons displayed defective CO2 chemosensitivity in agreement of in vivo CO2 response, likely due to excessive expression of the homomeric Kir4.1 channel. Thus, it seems that the global effect of MeCP2 on the A6 NE system contributes to the impaired systemic CO2 response as well as the breathing irregularities in Mecp2─/Y mice. Such an alteration allowed CO2 to be detected only when hypercapnia became severe, leading to periodical hyper- and hypoventilation. These findings not only provide a novel etiology for the breathing disturbances of Mecp2─/Y mice but also show direct evidence for the first time on a molecular mechanism for the central CO2 chemosensitivity.

Page generated in 0.0539 seconds