• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 15
  • Tagged with
  • 41
  • 41
  • 24
  • 20
  • 20
  • 19
  • 11
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

THERMODYNAMIC PROPERTIES OF WATER FOR COMPUTER SIMULATION OF POWER PLANTS.

KUCK, INARA ZARINS. January 1982 (has links)
Steam property evaluations may represent a significant portion of the computing time necessary for power system simulations. The iterative nature of the solutions for heat transfer and kinetic equations often requires thousands of steam property evaluations during the execution of a single program. Considerable savings may be realized by simplification of property evaluations. Empirical equations have been obtained for the thermodynamic properties of water in the region of interest. To maintain thermodynamic consistency, the compressibility factor Z, in terms of pressure and temperature, was obtained by curve fitting, and the enthalpy, entropy, and internal energy were derived by standard relationships. Formulations for heat capacity, saturation temperature as a function of saturation pressure, the specific volume of saturated water as a function of saturation pressure, and specific volume of saturated water as a function of the saturation temperature were determined by curve fitting of independent equations. Derivatives were obtained by differentiation of the appropriate formulations. Evaporator and superheater components of a liquid metal fast breeder reactor power plant simulator were chosen as test cases for the empirical representations. Results obtained using the empirical equations were comparable to those obtained using tabular values, but significant savings in computational costs were realized. Execution time for the evaporator program with the empirical forms was approximately 27 percent less than for the program with tables. Execution time for the super-heater program was approximately 23 percent less.

Page generated in 0.0636 seconds