• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 13
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemically-mediated interactions in the plankton: defenses against grazing and competitors by a red tide dinoflagellate

Prince, Emily Katherine 19 March 2008 (has links)
The species composition of planktonic communities is determined not only by abiotic factors, such as nutrient availability, temperature, and water column stratification but also by biotic interactions between hosts and parasites, predators and prey, and among competitors. Blooms of the red tide dinoflagellate, Karenia brevis, can dramatically alter the planktonic community, reaching densities of millions of cells per liter and occurring nearly monospecifically. I investigated whether K. brevis uses chemical compounds to defend against grazing or to inhibit the growth of competitors. Because K. brevis is known to produce brevetoxins which act as potent neurotoxins in mammals, I also investigated whether brevetoxins played a role in competition or predator resistance. Experiments revealed that copepods fed diets rich in Karenia brevis experienced lowered fitness, however, nutritional inadequacy, rather than toxicity, was responsible for the decrease in grazer fitness. Compounds exuded from natural samples of K. brevis blooms did, however, inhibit the growth of four of five model competitors. Compounds exuded from K. brevis cultures were similarly allelopathic to competitors. Exposure to these allelopathic compounds resulted in lowered photosynthetic efficiency of all competitors, and decreased cell membrane integrity of three competitors. The allelopathic potency of K. brevis blooms was variable between collections and years, but allelopathy did not correlate with bloom density or concentration of brevetoxins. However, the variability of allelopathy could partially be explained by the presence of specific competitors. The diatom Skeletonema costatum reduced the growth-inhibiting effects of K. brevis bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Allelopathic compounds exuded by K. brevis that inhibited the growth of the diatom Asterionellopsis glacialis were partially characterized. K. brevis produced multiple, polar, organic compounds that inhibited A. glacialis growth. Exuded brevetoxins, on the other hand, had no effect on A.glacialis growth. Taken together, these results indicate that K. brevis is not chemically defended against grazing, but does produce yet-unidentified allelopathic compounds that inhibit the growth of competing phytoplankton. Blooms of K. brevis may be facilitated by the exudation of potent allelopathic compounds, but the specific phytoplankton assemblage has the potential to alter bloom dynamics.
12

Impacts of Karenia brevis on bivalve reproduction and early life history / Impacts de Karenia brevis sur la reproduction et les stades de vie précoces des bivalves

Rolton, Anne 20 January 2015 (has links)
Karenia brevis, le dinoflagellé produisant des brevetoxines (PbTx), est la principale espèce d’efflorescences d’algues toxiques dans le Golfe du Mexique. Les effets de cette algue sur Mercenaria mercenaria et Crassostrea virginica sont méconnus tandis que les efflorescences coïncident avec la période de reproduction de ces espèces. Ce projet avait pour but de déterminer les effets i) d’une exposition à K. brevis en laboratoire et naturelle de terrain sur les processus physiologiques associés à la reproduction de M. mercenaria et C. virginica, et ii) d’une exposition à K.brevis sur la qualité et le développement des gamètes, embryons et larve de ces espèces. Suite à l'exposition des adultes de clams et d’huîtres à K. brevis, les paramètres physiologiques de la reproduction ont été affectés. La présence de PbTx dans les tissus des gamètes et le potentiel transfert maternel de PbTx à la progénie via les ovocytes, pourraient avoir entraîné les effets négatifs observés lors du développement larvaire.Les effets négatifs similaires causés par l'exposition des stades précoces à différentes préparations de cellules de K. brevis suggèrent que d'autres composés toxiques, en plus de PbTx, pourraient être impliqués dans la toxicité et, que la majorité des effets délétères se produisent durant les divisions embryonnaires.Le clam et l’huître américaine sont sensibles à K. brevis. Les effets négatifs sur les adultes et jeunes stades de vie, combinés à une exposition quasi-annuelle aux efflorescences de K. brevis, pourraient engendrer des perturbations majeures sur le recrutement des populations de ces espèces importantes, et avoir des répercussions environnementales et économiques. / The brevetoxin (PbTx) producing dinoflagellate, Karenia brevis is the most prevalent harmful algal bloom species in the Gulf of Mexico. The effects of this alga on Mercenaria mercenaria and Crassostrea virginica are poorly understood yet, blooms typically overlap with periods of reproduction and spawning in these species.The aims of this project were to determine the effects of i) laboratory and field exposure of K. brevis on the reproductive and related physiological processes of adult M. mercenaria and C. virginica and the quality of the offspring that were produced and ii) K. brevis exposure on gamete, embryo and larval development in these species.Following exposure of adult clams and oysters to K. brevis, negative effects were recorded on reproductive and physiological parameters. PbTx was recorded in gamete tissues, and maternal transfer of this PbTx to the offspring via the oocytes, may have resulted in the significant negative effects recorded on larval development up to the end of the lecithotrophic phase.The similar dose-dependent negative effects caused by direct exposure of gamete and early life stages to different cell preparations of K. brevis suggests that other toxic compounds in addition to PbTx may be involved in toxicity and, that the majority of negative effects occur during embryonic divisions.Hard clams and eastern oysters are susceptible to K. brevis exposure. The negative effects on adult and early life stages combined with the near- annual exposure to blooms of K. brevis could cause significant bottle-necks on the recruitment and population dynamics of these important species and, have wider reaching environmental and economic impacts.
13

Synthesis of a PbTx-2 photoaffinity and fluorescent probe and an alternative synthetic route to photoaffinity probes

Cassell, Ryan T 29 July 2014 (has links)
A natural phenomenon characterized by dense aggregations of unicellular photosynthetic marine organisms has been termed colloquially as red tides because of the vivid discoloration of the water. The dinoflagellate Karenia brevis is the cause of the Florida red tide bloom. K. brevis produces the brevetoxins, a potent suite of neurotoxins responsible for substantial amounts of marine mammal and fish mortalities. When consumed by humans, the toxin causes Neurotoxic Shellfish Poisoning (NSP). The native function of brevetoxin within the organism has remained mysterious since its discovery. There is a need to identify factors which contribute to and regulate toxin production within K. brevis. These toxins are produced and retained within the cell implicating a significant cellular role for their presence. Localization of brevetoxin and identification of a native receptor may provide insight into its native role as well as other polyether ladder type toxins such as the ciguatoxins, maitotoxins, and yessotoxins. In higher organisms these polyether ladder molecules bind to transmembrane proteins with high affinity. We anticipated the native brevetoxin receptor would also be a transmembrane protein. Photoaffinity labeling has become increasingly popular for identifying ligand receptors. By attaching ligands to these photophors, one is able to activate the molecule after the ligand binds to its receptor to obtain a permanent linkage between the two. Subsequent purification provides the protein with the ligand directly attached. A molecule that is capable of fluorescence is a fluorophore, which upon excitation is capable of re-emitting light. Fluorescent labeling uses fluorophores by attaching them covalently to biologically active compounds. The synthesis of a brevetoxin photoaffinity probe and its application in identifying a native brevetoxin receptor will be described. The preparation of a fluorescent derivative of brevetoxin will be described and its use in localizing the toxin to an organelle within K. brevis. In addition, the general utility of a synthesized photoaffinity label with other toxins having similar functionality will be described. An alternative synthetic approach to a general photoaffinity label will also be discussed whose goal was to accelerate the preparation and improve the overall synthetic yields of a multifunctional label.

Page generated in 0.0402 seconds