Spelling suggestions: "subject:"bridge cranes"" "subject:"cridge cranes""
1 |
Reliability based codification for the design of overhead travelling crane support structuresDymond, Juliet Sheryl 12 1900 (has links)
Thesis (PhD (Civil Engineering))--University of Stellenbosch, 2005. / Electric overhead travelling bridge cranes are an integral part of many industrial
processes, where they are used for moving loads around the industrial
area
|
2 |
Autonomer Brückenkran als automatisiertes Materialflusssystem /Wecker, Thomas. January 1900 (has links)
Thesis--Universität Ulm, 2006. / Includes bibliographical references.
|
3 |
Dynamics and control of mobile cranesVaughan, Joshua Eric. January 2008 (has links)
Thesis (Ph.D.)--Mechanical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: William Singhose; Committee Member: John-Paul Clarke; Committee Member: Kok-Meng Lee; Committee Member: Patricio Vela; Committee Member: Rhett Mayor.
|
4 |
Dynamics and control of mobile cranesVaughan, Joshua Eric 08 July 2008 (has links)
The rapid movement of machines is a challenging control problem because it often results in high levels of vibration. As a result, flexible machines are typically moved relatively slowly to avoid such vibration. Therefore, motion-induced vibration limits the operational speed of the system. Input shaping is one method that eliminates motion-induced vibrations by intelligently designing the reference command such that system vibration is cancelled. It has been successfully implemented on a number of systems, including bridge and tower cranes. The implementation of input shaping on cranes provides a substantial increase in the operational efficiency. Unfortunately, most cranes, once erected, have limited or no base mobility. This limits their workspace. The addition of base mobility could help extend the operational effectiveness of cranes and may also expand crane functionality. Mobile cranes may also be better suited for use in harsh and/or distant environments. Teleoperation of oscillatory systems, such as cranes, then becomes another avenue for advancement of crane functionality.
Base mobility in cranes presents both additional control challenges and operational opportunities. A crane with base mobility is redundantly actuated (overactuated), such that multiple combinations of actuators can be used to move a payload from one location to another. This opens the possibility for the selection of a combination of actuation that provides both rapid motion and limited system vibration. The extension of input shaping into this operational domain will provide a method to maximize effective actuation combinations.
Toward addressing these issues, new multi-input shaping methods were developed and applied to a mobile, portable tower crane. During this development, a firm understanding of robust input shaping techniques and the compromises inherent to input shaper design was formed. In addition, input shaping was compared to other command generation techniques, namely lowpass and notch filtering, and proven to be superior for vibration reduction in mechanical systems. Another, new class of input shapers was also introduced that limit the input shaper induced overshoot in human operated systems. Finally, a series of crane operator studies investigated the application of input shaping techniques to teleoperated cranes. These studies suggested that input shaping is able to dramatically improve remote crane operator performance.
|
Page generated in 0.054 seconds