• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of high strength stainless steel prestressing strands

Schuetz, Daniel Philip 10 January 2013 (has links)
Bridges and other coastal structures in Georgia and throughout the Southeast are deteriorating prematurely due to corrosion. Numerous corrosion initiated failures have occurred in precast prestressed concrete (PSC) piles and reinforced concrete (RC) pile caps, leading to the costly repair and replacement of either the entire bridge or the affected members. With the Federal Highway Administration's goal of a 100-year bridge service life and recent legislative action such as the Bridge Life Extension Act, new emphasis has been placed on the development and implementation of new corrosion mitigation techniques. This thesis involves the mechanical testing, and proposed future test program of high-strength stainless steel (HSSS) prestressing strand to be used in prestressed marine bridge piles. The metallurgy for two types of HSSS strand was selected from a previous study of the corrosion resistance, mechanical properties, and feasibility of 6 candidate HSSS drawn wire samples. Duplex stainless steel (DSS) grades 2205 and 2304 were selected for production of 7-wire 1/2" diameter prestressing strand. DSS wire rod was drawn, stranded, and heat-treated using the same production methods and equipment as used for standard of practice, high carbon prestressing strand. The production process was documented to analyze the problems facing this production method and suggest improvement and optimization. After production, the strands were subjected to a series of mechanical tests. Tension testing was performed to provide a stress-strain curve for the strands and related mechanical properties. Wire samples were also taken at varying points in the drawing process to give more information about the work hardening of the stainless steels. Stress relaxation testing was performed on both strand and wire samples to assess the overall losses and to provide comparisons between strand and wire test results as well as drawn wires before and after heat-treatment. An experimental program for future study was designed to assess the HSSS prestressing strand behavior in precast piles. This testing involves assessment of pile driving performance, pile flexural and shear behavior, strand transfer and development length, long-term prestressing force losses, and material durability.

Page generated in 0.0433 seconds