• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 18
  • 16
  • 15
  • 15
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Behavior of open web precast bridge girders : analytical study

Tschanz, T. January 1974 (has links)
No description available.
42

Static and free vibration analysis of curved box bridges.

Fam, Adel Refaat Metyas. January 1972 (has links)
No description available.
43

Dynamic response of skeived girder bridges to moving loads.

Eka, U. J. U. January 1971 (has links)
No description available.
44

Scourability of weak rock in the Oregon Coast Range

Baillie, Michael W. 28 January 1998 (has links)
The undermining of bridge foundations can lead to either costly repairs or a bridge collapse. These foundations must be designed to counter the effects of scour. Current practice does not allow for accurate estimates of scour in erodible rock. Scour in rock can be related to geotechnical and hydraulic properties. A field study of eleven bridge sites provided samples of the bedrock where the abrasive resistance of the rock was determined and hydraulic properties of the channel were calculated. Laboratory abrasion resistance values from a modified slake durability test and hydraulic variables such as stream power were compared to recent and past stream channel cross-sections. A preliminary model has been proposed wherein the degradation of the stream channel is related to the abrasive resistance of the bedrock and the area under the daily stream power. This method provides an estimate of the degradation of the stream bed due to abrasion by bedload and flood events, not necessarily local or contraction scour. / Graduation date: 1998
45

Landscape evaluation for Hong Kong-Zhuhai-Macau Bridge

Chan, Tai-fung, Sandy., 陳大鳳. January 2009 (has links)
published_or_final_version / Architecture / Master / Master of Landscape Architecture
46

A microcomputer program for the design of minimum weight bridge plate girders

Allison, Donald K January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
47

Decision Making Under Uncertainty in Systems Hydrology

Davis, Donald Ross 05 1900 (has links)
Design of engineering projects involve a certain amount of uncertainty. How should design decisions be taken in face of the uncertainty? What is the most efficient way of handling the data? Decision theory can provide useful answers to these questions. The literature review shows that decision theory is a fairly well developed decision method, with almost no application in hydrology. The steps of decision theoretic analysis are given. They are augmented by the concept of expected expected opportunity loss, which is developed as a means of measuring the expected value of additional data before they are received. The method is applied to the design of bridge piers and flood levees for Rillito Creek, Pima County, Arizona. Uncertainty in both the mean and the variance of the logarithms of the peak flows of Rillito Creek is taken into account. Also shown are decision theoretic methods for: 1) handling secondary data, such as obtained from a regression relation, 2) evaluating the effect of the use of non - sufficient statistics, 3) considering alternate models and 4) regionalizing data.It is concluded that decision theory provides a rational structure for making design decisions and for the associated data collection and handling problems.
48

Decision making under uncertainty in systems hydrology.

Davis, Donald Ross,1932- January 1971 (has links)
Design of engineering projects involve a certain amount of uncertainty. How should design decisions be taken in face of the uncertainty? What is the most efficient way of handling the data? Decision theory can provide useful answers to these questions. The literature review shows that decision theory is a fairly well developed decision method, with almost no application in hydrology. The steps of decision theoretic analysis are given. They are augmented by the concept of expected expected opportunity loss, which is developed as a means of measuring the expected value of additional data before they are received. The method is applied to the design of bridge piers and flood levees for Rillito Creek, Pima County, Arizona. Uncertainty in both the mean and the variance of the logarithms of the peak flows of Rillito Creek is taken into account. Also shown are decision theoretic methods for: 1) handling secondary data, such as obtained from a regression relation, 2) evaluating the effect of the use of nonsufficient statistics, 3) considering alternate models and 4) regionalizing data. It is concluded that decision theory provides a rational structure for making design decisions and for the associated data collection and handling problems.
49

An engineering and economic study of a vehicular crossing between Hong Kong and Kowloon

Chung, Po-han, 1931-, Chung, Po-han, 1931- January 1963 (has links)
No description available.
50

Deterioration Effects on Progressive Collapse of Bridges

Lin, Chih-Shiuan January 2019 (has links)
Progressive collapse is a failure mechanism that causes local damage of one structural element to progress throughout the whole structure leading to collapse of the entire structure. Recent catastrophic structural collapses in the world have drawn attention from structural engineers to the importance of designing structures that will continue to be operational even after some local failures occur. For some bridge types, although the design of each single member follows the proper design standards, they still cannot provide sufficient degree of redundancy to withstand a local failure without the total collapse of the entire structural system. In this study, two truss-type bridges, a half-through pedestrian bridge and a through-truss bridge, are investigated. The design configurations follow the AASHTO specifications, and they are usually classified as fracture-critical, non-redundant structures. Furthermore, traditional design and evaluation procedures generally classify through-truss bridges as single-load-path structures. However, due to the configuration of this bridge type, alternative load paths in the bridge could exist, indicating that this type of structural system has the ability to continue sustaining further loads after one of its members reaches its ultimate capacity by using different load paths. It is important to note that, since the structural load-carrying capacity strongly depends on the location of the damaged area, the progressive collapse mechanism of a structure could change substantially under different damage conditions. For the pin-connected pedestrian bridge model, the analysis showed that the failure of a local member is not responsible for the bridge’s collapse. Instead, it is the global buckling (instability) of top chord system that led the bridge to collapse. A modified 2D structure was studied to properly match the buckling load and its associated deformed shape with those obtained in the 3D model’s top chord system. The conclusions of this study verified that the collapse mechanism of this type of bridge is linked to the instability of the top chord system. For the same pedestrian bridge with beam-type connection, the bridge’s failure mechanism is instead associated with the local buckling of an upper chord element that led the bridge to collapse. Therefore, the pedestrian bridge should not be considered a fracture-critical structure since the failure mechanisms that led to its collapse were associated with large compression forces in the upper chord. Looking at deterioration effects on bridge performance, corrosion is one of the dominant causes of deterioration in steel bridges due to aggressive environment and inadequate maintenance. The effects of corrosion damage could alter significantly the bridge behavior depending on the extent of deterioration on the bridge structure. Comprehensive nonlinear analyses were conducted to investigate the changes in collapse mechanisms considering various corrosion level and different corroded locations. Results from the deteriorated pedestrian bridge analyses showed that the deterioration of corroded top chord members could significantly reduce the load-carrying capacity of the bridge and lead the structure to sudden catastrophic failure even for a load lower than the one used in the original design. For the through-truss bridge model, the cases with a corroded middle diagonal member revealed similar load-carrying capacities and collapse mechanisms to the undamaged bridge. These models show similar collapse mechanisms, related to the bending failure of the middle bottom chord and the local buckling of the middle top chord. When the corrosion of the top chord element is severe, the collapse mechanism of the bridge is still linked to the buckling failure of upper chord together with the bending failure of the middle bottom chord. However, the load-carrying capacity of this damaged bridge could drop considerably when compared to that of the undamaged model. Among all the cases analyzed in this study, the corrosion of the end post element represents the most critical case: here, the results indicated a considerable decrease in the load-carrying capacity of this damaged bridge model when compared to that of the undamaged bridge. In addition, this study also focused on the effects of support settlements on the load-carrying capacity and on the collapse mechanism of deteriorated bridges. It was found that, even with only a slight differential settlement support, the bridge model with a localized corroded diagonal element reached its ultimate capacity much earlier in the loading process than the bridge with fixed boundaries, with a reduction of the original load-carrying capacity of about 15%.

Page generated in 0.1577 seconds