• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Achieving Operational Seismic Performance of RC Bridge Bents Retrofitted with Buckling-Restrained Braces

Bazáez Gallardo, Ramiro Andrés Gabriel 13 February 2017 (has links)
Typical reinforced concrete (RC) bridges built prior to 1970 were designed with minimum seismic consideration, leaving numerous bridges highly susceptible to damage following an earthquake. In order to improve the seismic behavior of substandard RC bridges, this study presents the seismic performance of reinforced concrete bridge bents retrofitted and repaired using Buckling-Restrained Braces (BRBs) while considering subduction zone earthquake demands. In order to reflect displacement demands from subduction ground motions, research studies were conducted to develop quasi-static loading protocols and then investigate their effect on structural bridge damage. Results suggested that subduction loading protocols may reduce the displacement ductility capacity of RC bridge columns and change their failure mode. The cyclic performance of reinforced concrete bridge bents retrofitted and repaired using BRBs was experimentally evaluated using large-scale specimens and the developed loading histories. Three BRB specimens were evaluated with the aim of assessing the influence of these components on the overall performance of the retrofitted and repaired bents. Additionally, subassemblage tests were conducted in an effort to study the response of these elements and to allow for refined nonlinear characterization in the analysis of the retrofitted and repaired systems. The results of the large-scale experiments and analytical studies successfully demonstrated the effectiveness of utilizing buckling-restrained braces for achieving high displacement ductility of the retrofitted and repaired structures, while also controlling the damage of the existing vulnerable reinforced concrete bent up to an operational performance level.
2

Assessment of Seismic Retrofit Prioritization Methodology for Oregon's Highway Bridges Based on the Vulnerability of Highway Segments

Mehary, Selamawit Tesfayesus 18 July 2018 (has links)
Geologists have indicated that the question is not if a catastrophic earthquake will occur in Oregon but when one will occur. Scientists estimate that there is close to 40 percent conditional probability that a Cascadia subduction zone earthquake of magnitude 8.0 or above will strike Oregon in the next 50 years. In addition, the majority of Oregon's bridge inventory was built prior to the current understanding of bridge response and prior to current understanding of the expected earthquake demands. In order to minimize potential bridge damage in the case of an earthquake, one approach is to retrofit seismically deficient bridges. However, often times the decision maker is faced with the difficulty of selecting only a few bridges within the inadequate ones. Hence, the issue of prioritizing upgrading naturally arises. The goal of this study is to assess and refine bridge prioritization methodology to be utilized for ranking Oregon's bridge inventory. CFRP retrofit has been experimentally and analytically evaluated to demonstrate the effectiveness of the technique and was found to be an efficient and economical option. A vulnerability assessment estimates that close to 30 percent of Oregon's highway bridge inventory will sustain moderate damage to collapse. However, retrofitting two most common bridge types in the inventory will reduce the number of damaged bridges by about 70 percent. A cost-benefit assessment that takes into consideration direct and indirect costs associated with damaged bridges and retrofitting of bridges shows that the benefit is up to three times the cost to retrofit. The same principle was applied to rank twelve highway segments for seismic retrofit considered important by Oregon Department of Transportation. One selected segment was considered to be retrofitted and vulnerability assessed. The benefit to cost ratios for each assessment was compared and the highway segments were ranked accordingly. The top five segments in the ranking happen to be located in the East-West corridor connecting I-5 to US-101.
3

Seismic Performance of Substandard Reinforced Concrete Bridge Columns under Subduction-Zone Ground Motions

Lopez Ibaceta, Alvaro Francisco 04 June 2019 (has links)
A large magnitude, long duration subduction earthquake is impending in the Pacific Northwest, which lies near the Cascadia Subduction Zone (CSZ). Great subduction zone earthquakes are the largest earthquakes in the world and are the sole source zones that can produce earthquakes greater than M8.5. Additionally, the increased duration of a CSZ earthquake may result in more structural damage than expected. Given such seismic hazard, the assessment of reinforced concrete substructures has become crucial in order to prioritize the bridges that may need to be retrofitted and to maintain the highway network operable after a major seismic event. Recent long duration subduction earthquakes occurred in Maule, Chile (Mw 8.8, 2010) and Tohoku, Japan (Mw 9.0, 2011) are a reminder of the importance of studying the effect of subduction ground motions on structural performance. For this purpose, the seismic performance of substandard circular reinforced concrete bridge columns was experimentally evaluated using shake table tests by comparing the column response from crustal and subduction ground motions. Three continuous reinforced columns and three lap-spliced columns were tested using records from 1989 Loma Prieta, 2010 Maule and 2011 Tohoku. The results of the large-scale experiments and numerical studies demonstrated that the increased duration of subduction ground motions affects the displacement capacity and can influence the failure mode of bridge columns. Furthermore, more damage was recorded under the subduction ground motions as compared to similar maximum deformations under the crustal ground motion. The larger number of plastic strain cycles imposed by subduction ground motions influence occurrence of reinforcement bar buckling at lower displacement compared to crustal ground motions. Moreover, based on the experimental and numerical results, subduction zone ground motion effects are considered to have a significant effect on the performance of bridge columns. Therefore, it is recommended to consider the effects of subduction zone earthquakes in the performance assessment of substandard bridges, or when choosing ground motions for nonlinear time-history analysis, especially in regions prone to subduction zone mega earthquakes. Finally, for substandard bridges not yet retrofitted or upgraded seismically, the following performance limit recommendation is proposed: for the damage state of collapse, which is related to the ODOT's Life Safety performance level, the maximum strain in the longitudinal reinforcement should be reduced from 0.09 (in./in.) to a value of 0.032 (in./in.) for locations where subduction zone earthquakes are expected, to take into consideration the occurrence of bar buckling.

Page generated in 0.0701 seconds