• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of Exoelectrogenic Bacterial Communities Present in Different Brine Pools of the Red Sea

Ortiz Medina, Juan F. 05 1900 (has links)
One contemporary issue experienced worldwide is the climate change due to the combustion of fossil fuels. Microbial Electrochemical Systems pose as an alternative for energy generation. In this technology, microorganisms are primarily responsible for electricity production. To improve the performance it is reasonable to think that bacteria from diverse environments, such as the brine pools of the Red Sea, can be utilized in these systems. Samples from three brine pools: Atlantis II, Valdivia, and Kebrit Deeps, were analyzed using Microbial Electrochemical Cells, with a poised potential at +0.2 V (vs. Ag/AgCl) and acetate as electron donor, to evaluate the exoelectrogenic activity by the present microorganisms. Only samples from Valdivia Deep were able to produce a noticeable current of 6 A/m2. This result, along with acetate consumption and changes on the redox activity measured with cyclic voltammetry, provides arguments to con rm the presence of exoelectrogenic bacteria in this environment. Further characterization using microscopy and molecular biology techniques is required, to obtain the most amount of information about these microorganisms and their potential use in bioelectrochemical technologies.
2

Microbial Diversity and Ecology in the Interfaces of the Deep-sea Anoxic Brine Pools in the Red Sea

Hikmawan, Tyas I. 05 1900 (has links)
Deep-sea anoxic brine pools are one of the most extreme ecosystems on Earth, which are characterized by drastic changes in salinity, temperature, and oxygen concentration. The interface between the brine and overlaying seawater represents a boundary of oxic-anoxic layer and a steep gradient of redox potential that would initiate favorable conditions for divergent metabolic activities, mainly methanogenesis and sulfate reduction. This study aimed to investigate the diversity of Bacteria, particularly sulfate-reducing communities, and their ecological roles in the interfaces of five geochemically distinct brine pools in the Red Sea. Performing a comprehensive study would enable us to understand the significant role of the microbial groups in local geochemical cycles. Therefore, we combined culture-dependent approach and molecular methods, such as 454 pyrosequencing of 16S rRNA gene, phylogenetic analysis of functional marker gene encoding for the alpha subunits of dissimilatory sulfite reductase (dsrA), and single-cell genomic analysis to address these issues. Community analysis based on 16S rRNA gene sequences demonstrated high bacterial diversity and domination of Bacteria over Archaea in most locations. In the hot and multilayered Atlantis II Deep, the bacterial communities were stratified and hardly overlapped. Meanwhile in the colder brine pools, sulfatereducing Deltaproteobacteria were the most prominent bacterial groups inhabiting the interfaces. Corresponding to the bacterial community profile, the analysis of dsrA gene sequences revealed collectively high diversity of sulfate-reducing communities. Desulfatiglans-like dsrA was the prevalent group and conserved across the Red Sea brine pools. In addition to the molecular studies, more than thirty bacterial strains were successfully isolated and remarkably were found to be cytotoxic against the cancer cell lines. However, none of them were sulfate reducers. Thus, a single-cell genomic analysis was used to study the metabolism of uncultured phyla without having them in culture. We analysed ten single-cell amplified genomes (SAGs) of the uncultivated euryarchaeal Marine Benthic Group E (MBGE), which contain a key enzyme for sulfate reduction. The results showed the possibility of MBGE to grow autotrophically only with carbon dioxide and hydrogen. In the absence of adenosine 5’-phosphosulfate reductase, we hypothesized that MBGE perform sulfite reduction rather than sulfate reduction to conserve energy.
3

Red Sea Physicochemical Gradients as Drivers of Microbial Community Assembly

Barozzi, Alan 02 1900 (has links)
Environmental gradients exist at global and local scales and the variable conditions they encompass allow the coexistence of different microbial assemblages. Studying gradients and the selection forces they enclose can reveal the spatial succession and interactions of microorganisms and, therefore, how they are assembled in functionally stable communities. By combining high-throughput sequencing technology and laboratory experimental approaches, I investigated the factors that influence the microbial community assemblages in two types of environmental gradients in the Red Sea. I have studied the communities in the chemoclines occurring at the transition zones along the interfaces between seawater and the Deep Hypersaline Anoxic Brines (DHABs) at the bottom of the Red Sea. Across these chemoclines salinity increases of 5-10 times respect to the overlying seawater. I compared the microbial community diversity and metabolisms in the chemoclines of five different DHABs, finding different microbial community compositions due to the different DHABs characteristics, but the same succession of metabolisms along the five interfaces. From the Suakin Deep brine, I assembled the genome of a novel bacterial phylum and revealed the metabolic features that allow this organism to cope with the challenging variable conditions along the chemocline. In an alternative environmental system, I studied the effect of different thermal regimes on the microbiome of coastal sediment exposed to different yearly ranges of temperature variation. Sediment bacterial communities living under larger temperature variations are more flexible and can grow under a larger range of thermal conditions than communities experiencing narrower temperature ranges. My results highlight the large metabolic flexibility of microorganisms and their capacity to efficiently self-organize in complex functional assemblages under extreme ranges of environmental conditions.

Page generated in 0.0538 seconds