Spelling suggestions: "subject:"microscopicmethods"" "subject:"bronchoscopies""
1 |
High performance computer simulated bronchoscopy with interactive navigation.January 1998 (has links)
by Ping-Fu Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 98-102). / Abstract also in Chinese. / Abstract --- p.iv / Acknowledgements --- p.vi / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Medical Visualization System --- p.4 / Chapter 1.1.1 --- Data Acquisition --- p.4 / Chapter 1.1.2 --- Computer-aided Medical Visualization --- p.5 / Chapter 1.1.3 --- Existing Systems --- p.6 / Chapter 1.2 --- Research Goal --- p.8 / Chapter 1.2.1 --- System Architecture --- p.9 / Chapter 1.3 --- Organization of this Thesis --- p.10 / Chapter 2 --- Volume Visualization --- p.11 / Chapter 2.1 --- Sampling Grid and Volume Representation --- p.11 / Chapter 2.2 --- Priori Work in Volume Rendering --- p.13 / Chapter 2.2.1 --- Surface VS Direct --- p.14 / Chapter 2.2.2 --- Image-order VS Object-order --- p.18 / Chapter 2.2.3 --- Orthogonal VS Perspective --- p.22 / Chapter 2.2.4 --- Hardware Acceleration VS Software Acceleration --- p.23 / Chapter 2.3 --- Chapter Summary --- p.29 / Chapter 3 --- IsoRegion Leaping Technique for Perspective Volume Rendering --- p.30 / Chapter 3.1 --- Compositing Projection in Direct Volume Rendering --- p.31 / Chapter 3.2 --- IsoRegion Leaping Acceleration --- p.34 / Chapter 3.2.1 --- IsoRegion Definition --- p.35 / Chapter 3.2.2 --- IsoRegion Construction --- p.37 / Chapter 3.2.3 --- IsoRegion Step Table --- p.38 / Chapter 3.2.4 --- Ray Traversal Scheme --- p.41 / Chapter 3.3 --- Experiment Result --- p.43 / Chapter 3.4 --- Improvement --- p.47 / Chapter 3.5 --- Chapter Summary --- p.48 / Chapter 4 --- Parallel Volume Rendering by Distributed Processing --- p.50 / Chapter 4.1 --- Multi-platform Loosely-coupled Parallel Environment Shell --- p.51 / Chapter 4.2 --- Distributed Rendering Pipeline (DRP) --- p.55 / Chapter 4.2.1 --- Network Architecture of a Loosely-Coupled System --- p.55 / Chapter 4.2.2 --- Data and Task Partitioning --- p.58 / Chapter 4.2.3 --- Communication Pattern and Analysis --- p.59 / Chapter 4.3 --- Load Balancing --- p.69 / Chapter 4.4 --- Heterogeneous Rendering --- p.72 / Chapter 4.5 --- Chapter Summary --- p.73 / Chapter 5 --- User Interface --- p.74 / Chapter 5.1 --- System Design --- p.75 / Chapter 5.2 --- 3D Pen Input Device --- p.76 / Chapter 5.3 --- Visualization Environment Integration --- p.77 / Chapter 5.4 --- User Interaction: Interactive Navigation --- p.78 / Chapter 5.4.1 --- Camera Model --- p.79 / Chapter 5.4.2 --- Zooming --- p.81 / Chapter 5.4.3 --- Image View --- p.82 / Chapter 5.4.4 --- User Control --- p.83 / Chapter 5.5 --- Chapter Summary --- p.87 / Chapter 6 --- Conclusion --- p.88 / Chapter 6.1 --- Final Summary --- p.88 / Chapter 6.2 --- Deficiency and Improvement --- p.89 / Chapter 6.3 --- Future Research Aspect --- p.91 / Appendix --- p.93 / Chapter A --- Common Error in Pre-multiplying Color and Opacity --- p.94 / Chapter B --- Binary Factorization of the Sample Composition Equation --- p.96
|
2 |
Automatic extraction of bronchus and centerline determination from CT images for three dimensional virtual bronchoscopy.January 2000 (has links)
Law Tsui Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 64-70). / Abstracts in English and Chinese. / Acknowledgments --- p.ii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Structure of Bronchus --- p.3 / Chapter 1.2 --- Existing Systems --- p.4 / Chapter 1.2.1 --- Virtual Endoscope System (VES) --- p.4 / Chapter 1.2.2 --- Virtual Reality Surgical Simulator --- p.4 / Chapter 1.2.3 --- Automated Virtual Colonoscopy (AVC) --- p.5 / Chapter 1.2.4 --- QUICKSEE --- p.5 / Chapter 1.3 --- Organization of Thesis --- p.6 / Chapter 2 --- Three Dimensional Visualization in Medicine --- p.7 / Chapter 2.1 --- Acquisition --- p.8 / Chapter 2.1.1 --- Computed Tomography --- p.8 / Chapter 2.2 --- Resampling --- p.9 / Chapter 2.3 --- Segmentation and Classification --- p.9 / Chapter 2.3.1 --- Segmentation by Thresholding --- p.10 / Chapter 2.3.2 --- Segmentation by Texture Analysis --- p.10 / Chapter 2.3.3 --- Segmentation by Region Growing --- p.10 / Chapter 2.3.4 --- Segmentation by Edge Detection --- p.11 / Chapter 2.4 --- Rendering --- p.12 / Chapter 2.5 --- Display --- p.13 / Chapter 2.6 --- Hazards of Visualization --- p.13 / Chapter 2.6.1 --- Adding Visual Richness and Obscuring Important Detail --- p.14 / Chapter 2.6.2 --- Enhancing Details Incorrectly --- p.14 / Chapter 2.6.3 --- The Picture is not the Patient --- p.14 / Chapter 2.6.4 --- Pictures-'R'-Us --- p.14 / Chapter 3 --- Overview of Advanced Segmentation Methodologies --- p.15 / Chapter 3.1 --- Mathematical Morphology --- p.15 / Chapter 3.2 --- Recursive Region Search --- p.16 / Chapter 3.3 --- Active Region Models --- p.17 / Chapter 4 --- Overview of Centerline Methodologies --- p.18 / Chapter 4.1 --- Thinning Approach --- p.18 / Chapter 4.2 --- Volume Growing Approach --- p.21 / Chapter 4.3 --- Combination of Mathematical Morphology and Region Growing Schemes --- p.22 / Chapter 4.4 --- Simultaneous Borders Identification Approach --- p.23 / Chapter 4.5 --- Tracking Approach --- p.24 / Chapter 4.6 --- Distance Transform Approach --- p.25 / Chapter 5 --- Automated Extraction of Bronchus Area --- p.27 / Chapter 5.1 --- Basic Idea --- p.27 / Chapter 5.2 --- Outline of the Automated Extraction Algorithm --- p.28 / Chapter 5.2.1 --- Selection of a Start Point --- p.28 / Chapter 5.2.2 --- Three Dimensional Region Growing Method --- p.29 / Chapter 5.2.3 --- Optimization of the Threshold Value --- p.29 / Chapter 5.3 --- Retrieval of Start Point Algorithm Using Genetic Algorithm --- p.29 / Chapter 5.3.1 --- Introduction to Genetic Algorithm --- p.30 / Chapter 5.3.2 --- Problem Modeling --- p.31 / Chapter 5.3.3 --- Algorithm for Determining a Start Point --- p.33 / Chapter 5.3.4 --- Genetic Operators --- p.33 / Chapter 5.4 --- Three Dimensional Painting Algorithm --- p.34 / Chapter 5.4.1 --- Outline of the Three Dimensional Painting Algorithm --- p.34 / Chapter 5.5 --- Optimization of the Threshold Value --- p.36 / Chapter 6 --- Automatic Centerline Determination Algorithm --- p.38 / Chapter 6.1 --- Distance Transformations --- p.38 / Chapter 6.2 --- End Points Retrieval --- p.41 / Chapter 6.3 --- Graph Based Centerline Algorithm --- p.44 / Chapter 7 --- Experiments and Discussion --- p.48 / Chapter 7.1 --- Experiment of Automated Determination of Bronchus Algorithm --- p.48 / Chapter 7.2 --- Experiment of Automatic Centerline Determination Algorithm --- p.54 / Chapter 8 --- Conclusion --- p.62 / Bibliography --- p.63
|
Page generated in 0.0339 seconds