• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Topics in Random Matrices: Theory and Applications to Probability and Statistics

Kousha, Termeh 13 December 2011 (has links)
In this thesis, we discuss some topics in random matrix theory which have applications to probability, statistics and quantum information theory. In Chapter 2, by relying on the spectral properties of an associated adjacency matrix, we find the distribution of the maximum of a Dyck path and show that it has the same distribution function as the unsigned Brownian excursion which was first derived in 1976 by Kennedy. We obtain a large and moderate deviation principle for the law of the maximum of a random Dyck path. Our result extends the results of Chung, Kennedy and Khorunzhiy and Marckert. In Chapter 3, we discuss a method of sampling called the Gibbs-slice sampler. This method is based on Neal's slice sampling combined with Gibbs sampling. In Chapter 4, we discuss several examples which have applications in physics and quantum information theory.
2

Topics in Random Matrices: Theory and Applications to Probability and Statistics

Kousha, Termeh 13 December 2011 (has links)
In this thesis, we discuss some topics in random matrix theory which have applications to probability, statistics and quantum information theory. In Chapter 2, by relying on the spectral properties of an associated adjacency matrix, we find the distribution of the maximum of a Dyck path and show that it has the same distribution function as the unsigned Brownian excursion which was first derived in 1976 by Kennedy. We obtain a large and moderate deviation principle for the law of the maximum of a random Dyck path. Our result extends the results of Chung, Kennedy and Khorunzhiy and Marckert. In Chapter 3, we discuss a method of sampling called the Gibbs-slice sampler. This method is based on Neal's slice sampling combined with Gibbs sampling. In Chapter 4, we discuss several examples which have applications in physics and quantum information theory.
3

Topics in Random Matrices: Theory and Applications to Probability and Statistics

Kousha, Termeh 13 December 2011 (has links)
In this thesis, we discuss some topics in random matrix theory which have applications to probability, statistics and quantum information theory. In Chapter 2, by relying on the spectral properties of an associated adjacency matrix, we find the distribution of the maximum of a Dyck path and show that it has the same distribution function as the unsigned Brownian excursion which was first derived in 1976 by Kennedy. We obtain a large and moderate deviation principle for the law of the maximum of a random Dyck path. Our result extends the results of Chung, Kennedy and Khorunzhiy and Marckert. In Chapter 3, we discuss a method of sampling called the Gibbs-slice sampler. This method is based on Neal's slice sampling combined with Gibbs sampling. In Chapter 4, we discuss several examples which have applications in physics and quantum information theory.
4

Topics in Random Matrices: Theory and Applications to Probability and Statistics

Kousha, Termeh January 2012 (has links)
In this thesis, we discuss some topics in random matrix theory which have applications to probability, statistics and quantum information theory. In Chapter 2, by relying on the spectral properties of an associated adjacency matrix, we find the distribution of the maximum of a Dyck path and show that it has the same distribution function as the unsigned Brownian excursion which was first derived in 1976 by Kennedy. We obtain a large and moderate deviation principle for the law of the maximum of a random Dyck path. Our result extends the results of Chung, Kennedy and Khorunzhiy and Marckert. In Chapter 3, we discuss a method of sampling called the Gibbs-slice sampler. This method is based on Neal's slice sampling combined with Gibbs sampling. In Chapter 4, we discuss several examples which have applications in physics and quantum information theory.

Page generated in 0.0781 seconds