Spelling suggestions: "subject:"fruit périodique"" "subject:"fruit apériodique""
1 |
Variabilité temporelle des binaires-X : observations avec INTEGRAL. Modélisation.Cabanac, Clément 26 April 2007 (has links) (PDF)
L'origine de la variabilité observée dans l´émission X et Gammas des binaires X reste encore à ce jour un problème largement débattu en astrophysique des hautes énergies. Ces objets présentent notamment des fortes variations apériodiques et quasi-périodiques de leur luminosité sur d´aussi petites échelles de temps que la milliseconde et ce comportement erratique doit permettre de contraindre les modèles d´émission des zones les plus rapprochées des étoiles à neutrons ou des trous noirs de masse stellaire les constituant.<br /><br />Nous nous proposons dans ce manuscrit d´étudier le comportement de ces objets sous 3 angles différents : tout d´abord nous suivons l´évolution d´une source découverte par le satellite INTEGRAL, IGR J19140+0951. Par une étude spectro-temporelle et multi-instruments nous montrons que celle-ci doit vraisemblablement appartenir à la classe des binaires X de grande masse et abriter une étoile à neutron. Ensuite, nous proposons une nouvelle technique adaptée à l´étude temporelle des données provenant d´instruments à masques codés. Nous mettons en évidence par ce biais la présence de comportement périodiques et quasi-périodiques dans les données INTEGRAL/ISGRI de certains pulsars ou microquasars, jusqu'à des énergie proches de la centaine de keV.<br /><br />Enfin, nous proposons un modèle pour décrire la variabilité à basse fréquence des états les plus durs des binaires-X. Celui-ci est basé sur la comptonisation thermique de photons mous par une couronne chaude soumise à une onde de pression en géométrie cylindrique. Nous montrons alors par des solutions analytiques et une résolution numérique du problème qu´un tel modèle pourrait permettre de décrire certaines composantes observées dans les spectres de puissance des états durs ainsi que leur évolution tels que le bruit apériodique et certaines oscillations périodiques de basses fréquences.
|
2 |
Estimation de cartes d'énergie de hautes fréquences ou d'irrégularité de périodicité de la marche humaine par caméra de profondeur pour la détection de pathologiesNdayikengurukiye, Didier 04 1900 (has links)
Ce travail présente deux nouveaux systèmes simples
d'analyse de la marche humaine grâce à une caméra de profondeur
(Microsoft Kinect) placée devant un sujet marchant
sur un tapis roulant conventionnel, capables de détecter une marche
saine et celle déficiente. Le premier système repose sur le fait
qu'une marche normale présente typiquement un signal de profondeur
lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui
permet d'estimer une carte indiquant l'emplacement et l'amplitude
de l'énergie de haute fréquence (HFSE). Le second système analyse
les parties du corps qui ont un motif de mouvement
irrégulier, en termes de périodicité, lors de la marche. Nous
supposons que la marche d'un sujet sain présente partout dans le
corps, pendant les cycles de marche, un signal de profondeur
avec un motif périodique sans bruit. Nous estimons, à partir de la
séquence vidéo de chaque sujet, une carte montrant les zones
d'irrégularités de la marche (également appelées énergie de bruit
apériodique). La carte avec HFSE ou celle visualisant l'énergie de
bruit apériodique peut être utilisée comme un bon indicateur
d'une éventuelle pathologie, dans un outil de diagnostic précoce,
rapide et fiable, ou permettre de fournir des informations sur la
présence et l'étendue de la maladie ou des problèmes (orthopédiques,
musculaires ou neurologiques) du patient. Même si les
cartes obtenues sont informatives et très discriminantes pour une
classification visuelle directe, même pour un non-spécialiste, les
systèmes proposés permettent de détecter
automatiquement les individus en bonne santé et ceux avec des
problèmes locomoteurs. / This work presents two new and simple human gait analysis systems
based on a depth camera (Microsoft Kinect) placed
in front of a subject walking on a conventional treadmill, capable of
detecting a healthy gait from an impaired one. The first system
presented relies on the fact that a normal walk typically exhibits a
smooth motion (depth) signal, at each pixel with less high-frequency
spectral energy content than an abnormal walk. This permits to
estimate a map for that subject, showing the location and the
amplitude of the high-frequency spectral energy (HFSE). The second
system analyses the patient's body parts that have an irregular
movement pattern, in terms of periodicity, during walking. Herein we
assume that the gait of a healthy subject exhibits anywhere in the
human body, during the walking cycles, a depth signal with a periodic
pattern without noise. From each subject’s video sequence, we
estimate a saliency color map showing the areas of strong gait
irregularities also called aperiodic noise energy. Either the HFSE
or aperiodic noise energy shown in the map can be used as a good
indicator of possible pathology in an early, fast and reliable
diagnostic tool or to provide information about the presence and
extent of disease or (orthopedic, muscular or neurological) patient's
problems.
Even if the maps obtained are informative and highly discriminant for
a direct visual classification, even for a non-specialist, the
proposed systems allow us to automatically detect maps representing
healthy individuals and those representing individuals with
locomotor problems.
|
3 |
Estimation de cartes d'énergie du bruit apériodique de la marche humaine avec une caméra de profondeur pour la détection de pathologies et modèles légers de détection d'objets saillants basés sur l'opposition de couleursNdayikengurukiye, Didier 06 1900 (has links)
Cette thèse a pour objectif l’étude de trois problèmes : l’estimation de cartes de saillance de l’énergie du bruit apériodique de la marche humaine par la perception de profondeur pour la détection de pathologies, les modèles de détection d’objets saillants en général et les modèles légers en particulier par l’opposition de couleurs.
Comme première contribution, nous proposons un système basé sur une caméra de profondeur et un tapis roulant, qui analyse les parties du corps du patient ayant un mouvement irrégulier, en termes de périodicité, pendant la marche. Nous supposons que la marche d'un sujet sain présente n'importe où dans son corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. La présence de bruit et son importance peuvent être utilisées pour signaler la présence et l'étendue de pathologies chez le sujet. Notre système estime, à partir de chaque séquence vidéo, une carte couleur de saillance montrant les zones de fortes irrégularités de marche, en termes de périodicité, appelées énergie de bruit apériodique, de chaque sujet. Notre système permet aussi de détecter automatiquement les cartes des individus sains et ceux malades.
Nous présentons ensuite deux approches pour la détection d’objets saillants. Bien qu’ayant fait l’objet de plusieurs travaux de recherche, la détection d'objets saillants reste un défi. La plupart des modèles traitent la couleur et la texture séparément et les considèrent donc implicitement comme des caractéristiques indépendantes, à tort.
Comme deuxième contribution, nous proposons une nouvelle stratégie, à travers un modèle simple, presque sans paramètres internes, générant une carte de saillance robuste pour une image naturelle. Cette stratégie consiste à intégrer la couleur dans les motifs de texture pour caractériser une micro-texture colorée, ceci grâce au motif ternaire local (LTP) (descripteur de texture simple mais puissant) appliqué aux paires de couleurs. La dissemblance entre chaque paire de micro-textures colorées est calculée en tenant compte de la non-linéarité des micro-textures colorées et en préservant leurs distances, donnant une carte de saillance intermédiaire pour chaque espace de couleur. La carte de saillance finale est leur combinaison pour avoir des cartes robustes.
Le développement des réseaux de neurones profonds a récemment permis des performances élevées. Cependant, il reste un défi de développer des modèles de même performance pour des appareils avec des ressources limitées.
Comme troisième contribution, nous proposons une nouvelle approche pour un modèle léger de réseau neuronal profond de détection d'objets saillants, inspiré par les processus de double opposition du cortex visuel primaire, qui lient inextricablement la couleur et la forme dans la perception humaine des couleurs. Notre modèle proposé, CoSOV1net, est entraîné à partir de zéro, sans utiliser de ``backbones'' de classification d'images ou d'autres tâches. Les expériences sur les ensembles de données les plus utilisés et les plus complexes pour la détection d'objets saillants montrent que CoSOV1Net atteint des performances compétitives avec des modèles de l’état-de-l’art, tout en étant un modèle léger de détection d'objets saillants et pouvant être adapté aux environnements mobiles et aux appareils à ressources limitées. / The purpose of this thesis is to study three problems: the estimation of saliency maps of the aperiodic noise energy of human gait using depth perception for pathology detection, and to study models for salient objects detection in general and lightweight models in particular by color opposition.
As our first contribution, we propose a system based on a depth camera and a treadmill, which analyzes the parts of the patient's body with irregular movement, in terms of periodicity, during walking. We assume that a healthy subject gait presents anywhere in his (her) body, during gait cycles, a depth signal with a periodic pattern without noise. The presence of noise and its importance can be used to point out presence and extent of the subject’s pathologies. Our system estimates, from each video sequence, a saliency map showing the areas of strong gait irregularities, in terms of periodicity, called aperiodic noise energy, of each subject. Our system also makes it possible to automatically detect the saliency map of healthy and sick subjects.
We then present two approaches for salient objects detection. Although having been the subject of many research works, salient objects detection remains a challenge. Most models treat color and texture separately and therefore implicitly consider them as independent feature, erroneously.
As a second contribution, we propose a new strategy through a simple model, almost without internal parameters, generating a robust saliency map for a natural image. This strategy consists in integrating color in texture patterns to characterize a colored micro-texture thanks to the local ternary pattern (LTP) (simple but powerful texture descriptor) applied to the color pairs. The dissimilarity between each colored micro-textures pair is computed considering non-linearity from colored micro-textures and preserving their distances. This gives an intermediate saliency map for each color space. The final saliency map is their combination to have robust saliency map.
The development of deep neural networks has recently enabled high performance. However, it remains a challenge to develop models of the same performance for devices with limited resources.
As a third contribution, we propose a new approach for a lightweight salient objects detection deep neural network model, inspired by the double opponent process in the primary visual cortex, which inextricably links color and shape in human color perception. Our proposed model, namely CoSOV1net, is trained from scratch, without using any image classification backbones or other tasks. Experiments on the most used and challenging datasets for salient objects detection show that CoSOV1Net achieves competitive performance with state-of-the-art models, yet it is a lightweight detection model and it is a salient objects detection that can be adapted to mobile environments and resource-constrained devices.
|
Page generated in 0.0286 seconds