Spelling suggestions: "subject:"bubblescale interaction"" "subject:"doublewall interaction""
1 |
Numerical Simulations of Interactions of Solid Particles and Deformable Gas Bubbles in Viscous LiquidsQin, Tong 11 January 2013 (has links)
Studying the interactions of solid particles and deformable gas<br />bubbles in viscous liquids is very important in many applications,<br />especially in mining and chemical industries. These interactions<br />involve liquid-solid-air multiphase flows and an<br />arbitrary-Lagrangian-Eulerican (ALE) approach is used for the direct<br />numerical simulations. In the system of rigid particles and<br />deformable gas bubbles suspended in viscous liquids, the<br />Navier-Stokes equations coupled with the equations of motion of the<br />particles and deformable bubbles are solved in a finite-element<br />framework. A moving, unstructured, triangular mesh tracks the<br />deformation of the bubble and free surface with adaptive refinement.<br />In this dissertation, we study four problems. In the first three<br />problems the flow is assumed to be axisymmetric and two dimensional<br />(2D) in the fourth problem.<br /><br />Firstly, we study the interaction between a rising deformable bubble<br />and a solid wall in highly viscous liquids. The mechanism of the<br />bubble deformation as it interacts with the wall is described in<br />terms of two nondimensional groups, namely the Morton number (Mo)<br />and Bond number (Bo). The film drainage process is also<br />considered. It is found that three modes of bubble-rigid wall<br />interaction exist as Bo changes at a moderate Mo.<br />The first mode prevails at small Bo where the bubble deformation<br />is small. For this mode, the bubble is<br /> hard to break up and will bounce back and eventually attach<br />to the rigid wall. In the second mode, the bubble may break up after<br />it collides with the rigid wall, which is determined by the film<br />drainage. In the third mode, which prevails at high Bo, the bubble<br />breaks up due to the bottom surface catches up the top surface<br />during the interaction.<br /><br />Secondly, we simulate the interaction between a rigid particle and a<br />free surface. In order to isolate the effects of viscous drag and<br />particle inertia, the gravitational force is neglected and the<br />particle gains its impact velocity by an external accelerating<br />force. The process of a rigid particle impacting a free surface and<br />then rebounding is simulated. Simplified theoretical models are<br />provided to illustrate the relationship between the particle<br />velocity and the time variation of film thickness between the<br />particle and free surface. Two film thicknesses are defined. The<br />first is the thickness achieved when the particle reaches its<br />highest position. The second is the thickness when the particle<br />falls to its lowest position. The smaller of these two thicknesses<br />is termed the minimum film thickness and its variation with the<br />impact velocity has been determined. We find that the interactions<br />between the free surface and rigid particle can be divided into<br />three regimes according to the trend of the first film thickness.<br />The three regimes are viscous regime, inertial regime and jetting<br />regime. In viscous regime, the first film thickness decreases as the<br />impact velocity increases. Then it rises slightly in the inertial<br />regime because the effect of liquid inertia becomes larger as the<br />impact velocity increases. Finally, the film thickness decreases<br />again due to Plateau-Rayleigh instability in the jetting regime.<br />We also find that the minimum film thickness corresponds to an<br />impact velocity on the demarcation point between the viscous and<br />inertial regimes. This fact is caused by the balance of viscous<br />drag, surface deformation and liquid inertia.<br /><br />Thirdly, we consider the interaction between a rigid particle and a<br />deformable bubble. Two typical cases are simulated: (1) Collision of<br />a rigid particle with a gas bubble in water in the absence of<br />gravity, and (2) Collision of a buoyancy-driven rising bubble with a<br />falling particle in highly viscous liquids. We also compare our<br />simulation results with available experimental data. Good agreement<br />is obtained for the force on the particle and the shape of the<br />bubble.<br /><br />Finally, we investigated the collisions of groups of bubbles and<br />particles in two dimensions. A preliminary example of the oblique<br />collision between a single particle and a single bubble is conducted<br />by giving the particle a constant acceleration. Then, to investigate<br />the possibility of particles attaching to bubbles, the interactions<br />between a group of 22 particles and rising bubbles are studied. Due<br />to the fluid motion, the particles involved in central collisions<br />with bubbles have higher possibilities to attach to the bubble. / Ph. D.
|
Page generated in 0.5087 seconds