• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Evaluation of a Test Platform for Thermal Mechanical and Acoustical Loading

Jasmin, Abdi 01 May 2015 (has links)
Next generation hypersonic cruise vehicle components will be subjected to a collection of loads not achievable in contemporary mechanical test platform. The purpose of this thesis is to demonstrate the design of a unique test platform for combined extreme environment (P-CEEn) needed to replicate thermal, acoustic and mechanical loading to be imparted on hypersonic fuselage panels. The panels are typically subjected to super-imposed cycling from hypersonic shock/impingement and aerodynamic pressure from the usual ascent-cruise-decent motion of the aircrafts combined with mechanical vibration at acoustic frequencies; moreover, these slender components will undergo conventional mechanical fatigue with compressive mean stress due to geometric constraint. Having the ability to precisely replicate the working environment of the fuselage components will help to identify life limiting conditions of the materials. A universal column buckling test frame, an acoustic horn, and a custom-made quartz-lamp furnace have been configured to allow for closed-loop feedback control of cyclic mechanical, thermal, and acoustic loading. The graphical user interface (GUI) associated with this first-of-its-kind test device allows users to design cyclic load profiles that idealize the thermo-acousto-mechanical loading of critical panels. Initial calibration experiments are presented.

Page generated in 0.1729 seconds