Spelling suggestions: "subject:"building pode compliance"" "subject:"building pode kompliance""
1 |
Spreadsheet Based Tool for Building Energy Codes: Analysis, Comparison and ComplianceJanuary 2011 (has links)
abstract: Buildings in the United States, account for over 68 percent of electricity consumed, 39 percent of total energy use, and 38 percent of the carbon dioxide emissions. By the year 2035, about 75% of the U.S. building sector will be either new or renovated. The energy efficiency requirements of current building codes would have a significant impact on future energy use, hence, one of the most widely accepted solutions to slowing the growth rate of GHG emissions and then reversing it involves a stringent adoption of building energy codes. A large number of building energy codes exist and a large number of studies which state the energy savings possible through code compliance. However, most codes are difficult to comprehend and require an extensive understanding of the code, the compliance paths, all mandatory and prescriptive requirements as well as the strategy to convert the same to energy model inputs. This paper provides a simplified solution for the entire process by providing an easy to use interface for code compliance and energy simulation through a spreadsheet based tool, the ECCO or the Energy Code COmpliance Tool. This tool provides a platform for a more detailed analysis of building codes as applicable to each and every individual building in each climate zone. It also facilitates quick building energy simulation to determine energy savings achieved through code compliance. This process is highly beneficial not only for code compliance, but also for identifying parameters which can be improved for energy efficiency. Code compliance is simplified through a series of parametric runs which generates the minimally compliant baseline building and 30% beyond code building. This tool is seen as an effective solution for architects and engineers for an initial level analysis as well as for jurisdictions as a front-end diagnostic check for code compliance.   / Dissertation/Thesis / Rocky Mountain Institute- Model Manager Tool / ECCO Spreadsheet Tool / M.S. Built Environment 2011
|
2 |
Invariant Signatures for Supporting BIM InteroperabilityJin Wu (11187477) 27 July 2021 (has links)
<div>
<div>
<p>Building Information Modeling (BIM) serves as an important media in supporting
automation in the architecture, engineering, and construction (AEC) domain. However, with its
fast development by different software companies in different applications, data exchange became
labor-intensive, costly, and error-prone, which is known as the problem of interoperability.
Industry foundation classes (IFC) are widely accepted to be the future of BIM in solving the
challenge of BIM interoperability. However, there are practical limitations of the IFC standards,
e.g., IFC’s flexibility creates space for misuses of IFC entities. This incorrect semantic information
of an object can cause severe problems to downstream uses. To address this problem, the author
proposed to use the concept of invariant signatures, which are a new set of features that capture
the essence of an AEC object. Based on invariant signatures, the author proposed a rule-based
method and a machine learning method for BIM-based AEC object classification, which can be
used to detect potential misuses automatically. Detailed categories for beams were tested to have
error-free performance. The best performing algorithm developed by the methods achieved 99.6%
precision and 99.6% recall in the general building object classification. To promote automation
and further improve the interoperability of BIM tasks, the author adopted invariant signature-based
object classification in quantity takeoff (QTO), structural analysis, and model validation for
automated building code compliance checking (ACC). Automation in such BIM tasks was enabled
with high accuracy.</p><p><br></p><p><br></p>
</div>
</div>
|
Page generated in 0.0851 seconds