• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PIPE5 Finite Element Analysis For Buried Structures

Aldous, David 01 May 2008 (has links)
PIPE5 is a two-dimensional finite element analysis program for buried structure analysis. The program has gone through several changes over the years. Some of the features that were added in the latest revision are stress stiffening, corotational formulation, bandwidth minimization, residual monitoring, and dynamic memory allocation. Some parts of the program were also rewritten to make them clearer and improve their performance. After the modifications several comparisons were made to other programs and earlier versions of the program to test the accuracy of the program in its latest form.
2

Tenkostěnné přesypané konstrukce / Flexible buried structures

Houšť, Vladimír January 2015 (has links)
The thesis is devoted to analysing of flexible buried arch structures. Modelling of the flexible concrete arch is carried out via a nonlinear finite element model that accounts for soil constitutive relations, soil-structure interactions, sequential construction stages and soil compaction. Advanced FE-model was verified by measurement obtained by full-scale field testing of two buried arches. Mathematical optimization methods of genetic algorithms and Levenberg-Marquardt method are applied to already calibrated complex computational models in order to reduce bending and associated flexural stresses in the concrete section of buried arch. Centre line of the arch is parameterized by cubic Bezier curve to reach interpolation of thrust line. Optimization technique is applied with extensive parametrical study which shows the optimal shapes for buried arches of various span/rise ratios, backfill depths and foundation soil types. For practical application are given coordinates of Bézier curve control polygons of particular resulting shape. Subsequently is applied optimization method for a theoretical reduction of tensile stresses obtained by shape optimization of previously verified numerical model of buried arch. Comparisons of earth pressure, bending moment axial force and deflection of flexible structure during sequential construction of different span/raise ratios of buried arches are presented. The behaviour of flexible buried arch with effect of local traffic load model LM1 has been analysed via 3D finite elements model with respect to different depth of backfill above crown.

Page generated in 0.0484 seconds