• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 10
  • 6
  • 2
  • 1
  • Tagged with
  • 91
  • 51
  • 46
  • 28
  • 26
  • 19
  • 18
  • 17
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

The influence of the number of fuel passes through a pebble bed core on the coupled neutronics / thermalhydraulics characteristics / by Wilna Geringer

Geringer, Josina Wilhelmina January 2010 (has links)
The increasing demand for energy and the effect on climate change are some of the big drivers in support of the nuclear renaissance. A great amount of energy is spent on studies to determine the contribution of nuclear power to the future energy supply. Many countries are investing in generation III and IV reactors such as the Westinghouse AP1000 because of its passive cooling system, which makes it attractive for its safety. The pebble bed high temperature gas cooled reactors are designed to be intrinsically safe, which is one of the main drivers for developing these reactors. A pebble bed reactor is a high temperature reactor which is helium–cooled and graphitemoderated using spherical fuel elements that contain triple–coated isotropic fuel particles (TRISO). The success of its intrinsic safety lies in the design of the fuel elements that remain intact at very high temperatures. When temperatures significantly higher than 1600 °C are reached during accidents, the fuel elements with their inherent safety features may be challenged. A pebble bed reactor has an online fuelling concept, where fuel is circulated through the core. The fuel is loaded at the top of the core and through gravity, moves down to the bottom where it is unloaded to either be discarded or to be re–circulated. This is determined by the burnup measuring system. By circulating the fuel spheres more than once through the reactor a flattened axial power profile with lower power peaking and therefore lower maximum fuel temperatures can be achieved. This is an attractive approach to increase the core performance by lowering the important fuel operating parameters. However, the circulation has an economic impact, as it increases the design requirements on the burnup measuring system (faster measuring times and increased circulation). By adopting a multi–pass recycling scheme of the pebble fuel elements it is shown that the axial power peaking can be reduced The primary objective for this study is the investigation of the influences on the core design with regards to the number of fuel passes. The general behaviour of the two concepts, multi–pass refuelling and a once–through circulation, are to be evaluated with regards to flux and power and the maximum fuel temperature profiles. The relative effects of the HTR–Modul with its cylindrical core design and the PBMR 400 MW with its annular core design are also compared to verify the differences and trends as well as the influences of the control rods on core behaviour. This is important as it has a direct impact on the safety of the plant (that the fuel temperatures need to remain under 1600 °C in normal and accident conditions). The work is required at an early stage of reactor design since it influences design decisions needed on the fuel handling system design and defuel chute decay time, and has a direct impact on the fuel burnup–level qualification. The analysis showed that in most cases the increase in number of fuel passes not only flattens the power profile, but improves the overall results. The improvement in results decreases exponentially and from ten passes the advantage of having more passes becomes insignificant. The effect of the flattened power profile is more visible on the PBMR 400 MW than on the HTR–Modul. The 15–pass HTR–Modul design is at its limit with regards to the measuring time of a single burnup measuring system. However, by having less passes through the core, e.g. tenpasses, more time will be available for burnup measurement. The PBMR 400 MW has three defuel chutes allowing longer decay time which improves measurement accuracy, and, as a result could benefit from more than six passes without increasing the fuel handling system costs. The secondary objective of performing a sensitivity analysis on the control rod insertion positions and the effect of higher fuel enrichment has also been achieved. Control rod efficiency is improved when increasing the excess reactivity by means of control rod insertion. However, this is done at lower discharge burnup and shut down margins. Higher enrichment causes an increase in power peaking and more fuel–passes will be required to maintain the peaking and temperature margins than before. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
62

The influence of the number of fuel passes through a pebble bed core on the coupled neutronics / thermalhydraulics characteristics / by Wilna Geringer

Geringer, Josina Wilhelmina January 2010 (has links)
The increasing demand for energy and the effect on climate change are some of the big drivers in support of the nuclear renaissance. A great amount of energy is spent on studies to determine the contribution of nuclear power to the future energy supply. Many countries are investing in generation III and IV reactors such as the Westinghouse AP1000 because of its passive cooling system, which makes it attractive for its safety. The pebble bed high temperature gas cooled reactors are designed to be intrinsically safe, which is one of the main drivers for developing these reactors. A pebble bed reactor is a high temperature reactor which is helium–cooled and graphitemoderated using spherical fuel elements that contain triple–coated isotropic fuel particles (TRISO). The success of its intrinsic safety lies in the design of the fuel elements that remain intact at very high temperatures. When temperatures significantly higher than 1600 °C are reached during accidents, the fuel elements with their inherent safety features may be challenged. A pebble bed reactor has an online fuelling concept, where fuel is circulated through the core. The fuel is loaded at the top of the core and through gravity, moves down to the bottom where it is unloaded to either be discarded or to be re–circulated. This is determined by the burnup measuring system. By circulating the fuel spheres more than once through the reactor a flattened axial power profile with lower power peaking and therefore lower maximum fuel temperatures can be achieved. This is an attractive approach to increase the core performance by lowering the important fuel operating parameters. However, the circulation has an economic impact, as it increases the design requirements on the burnup measuring system (faster measuring times and increased circulation). By adopting a multi–pass recycling scheme of the pebble fuel elements it is shown that the axial power peaking can be reduced The primary objective for this study is the investigation of the influences on the core design with regards to the number of fuel passes. The general behaviour of the two concepts, multi–pass refuelling and a once–through circulation, are to be evaluated with regards to flux and power and the maximum fuel temperature profiles. The relative effects of the HTR–Modul with its cylindrical core design and the PBMR 400 MW with its annular core design are also compared to verify the differences and trends as well as the influences of the control rods on core behaviour. This is important as it has a direct impact on the safety of the plant (that the fuel temperatures need to remain under 1600 °C in normal and accident conditions). The work is required at an early stage of reactor design since it influences design decisions needed on the fuel handling system design and defuel chute decay time, and has a direct impact on the fuel burnup–level qualification. The analysis showed that in most cases the increase in number of fuel passes not only flattens the power profile, but improves the overall results. The improvement in results decreases exponentially and from ten passes the advantage of having more passes becomes insignificant. The effect of the flattened power profile is more visible on the PBMR 400 MW than on the HTR–Modul. The 15–pass HTR–Modul design is at its limit with regards to the measuring time of a single burnup measuring system. However, by having less passes through the core, e.g. tenpasses, more time will be available for burnup measurement. The PBMR 400 MW has three defuel chutes allowing longer decay time which improves measurement accuracy, and, as a result could benefit from more than six passes without increasing the fuel handling system costs. The secondary objective of performing a sensitivity analysis on the control rod insertion positions and the effect of higher fuel enrichment has also been achieved. Control rod efficiency is improved when increasing the excess reactivity by means of control rod insertion. However, this is done at lower discharge burnup and shut down margins. Higher enrichment causes an increase in power peaking and more fuel–passes will be required to maintain the peaking and temperature margins than before. / Thesis (M.Ing. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2011.
63

Numerical study of error propagation in Monte Carlo depletion simulations

Wyant, Timothy Joseph 26 June 2012 (has links)
Improving computer technology and the desire to more accurately model the heterogeneity of the nuclear reactor environment have made the use of Monte Carlo depletion codes more attractive in recent years, and feasible (if not practical) even for 3-D depletion simulation. However, in this case statistical uncertainty is combined with error propagating through the calculation from previous steps. In an effort to understand this error propagation, four test problems were developed to test error propagation in the fuel assembly and core domains. Three test cases modeled and tracked individual fuel pins in four 17x17 PWR fuel assemblies. A fourth problem modeled a well-characterized 330MWe nuclear reactor core. By changing the code's initial random number seed, the data produced by a series of 19 replica runs of each test case was used to investigate the true and apparent variance in k-eff, pin powers, and number densities of several isotopes. While this study does not intend to develop a predictive model for error propagation, it is hoped that its results can help to identify some common regularities in the behavior of uncertainty in several key parameters.
64

Desenvolvimento de um sistema computacional para monitoracao dos parametros de reatividade e das oscilacoes axiais de xenonio do reator nuclear de Agra 1

FERREIRA JUNIOR, DECIO B.M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:33Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:52Z (GMT). No. of bitstreams: 1 07171.pdf: 7581243 bytes, checksum: 53b2abeaefa7a689061fbc0c51a5c365 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
65

Acoplamento entre os métodos diferencial e da teoria da perturbação para o cálculo dos coeficientes de sensibilidade em problemas de transmutação nuclear / Coupling between the differential and perturbation theory methods for calculating sensitivity coefficients in nuclear transmutation problems

ROSSI, LUBIANKA F.R. 17 March 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-03-17T10:41:16Z No. of bitstreams: 0 / Made available in DSpace on 2015-03-17T10:41:16Z (GMT). No. of bitstreams: 0 / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
66

Desenvolvimento de um sistema computacional para monitoracao dos parametros de reatividade e das oscilacoes axiais de xenonio do reator nuclear de Agra 1

FERREIRA JUNIOR, DECIO B.M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:45:33Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:08:52Z (GMT). No. of bitstreams: 1 07171.pdf: 7581243 bytes, checksum: 53b2abeaefa7a689061fbc0c51a5c365 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
67

Acoplamento entre os métodos diferencial e da teoria da perturbação para o cálculo dos coeficientes de sensibilidade em problemas de transmutação nuclear / Coupling between the differential and perturbation theory methods for calculating sensitivity coefficients in nuclear transmutation problems

ROSSI, LUBIANKA F.R. 17 March 2015 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-03-17T10:41:16Z No. of bitstreams: 0 / Made available in DSpace on 2015-03-17T10:41:16Z (GMT). No. of bitstreams: 0 / Este trabalho apresenta um novo método para o cálculo dos coecientes de sensibilidade, através da união do metodo diferencial e da teoria da perturbação generalizada, que são os dois métodos tradicionalmente utilizados em física de reatores para a obtenção de tais grandezas. Esses dois métodos apresentam algumas deciências tornando os cálculos dos coeficientes de sensibilidade lentos ou computacionalmente exaustivos, mas unindo-os e possível eliminar as deciências apresentadas por ambos e obter uma nova equação para o coe- ciente de sensibilidade. O método proposto neste trabalho foi aplicado em um reator do tipo PWR , onde foi feita análise de sensibilidade da produção e da razão de conversão do 239Pu, para um ciclo de 120 dias de queima. O código utilizado para a análise de queima e análise de sensibilidade, o CINEW, foi desenvolvido durante este trabalho e os resultados obtidos foram comparados com os códigos amplamente utilizados em física de reatores, como o CINDER e o SERPENT. As conclusões obtidas foram que o novo método matemático para a obtenção dos coeficientes de sensibilidade e o CINEW, além de fornecer agilidade numérica também presentam eciência e segurança. Pois o novo método matemático para a obtenção dos coeficientes quando comparados com os métodos tradicionais utilizados para a análise de sensibilidade, mostram resultados satisfatórios, mesmo quando o método utiliza aproximações matemáticas que diferem do método proposto, e com a vantagem de não apresentar as deciências apresentadas pelos métodos diferencial e da teoria da perturbação generalizada. As análises de queima obtidas pelo CINEW foram comparadas com o CINDER, que mostraram uma diferença aceitável, apesar do CINDER apresentar alguns problemas computacionais que advém da época em que foi feito. A originalidade deste trabalho e a aplicação do método proposto em problemas que envolvem dependência temporal e a elaboração do primerio código nacional que faz análise de queima e análise de sensibilidade. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
68

Estudo de modelos para o comportamento a altas queimas de varetas combustíveis de reatores a água leve pressurizada / Modeling of PWR fuel at extended burnup FRAPCON

DIAS, RAPHAEL M. 26 August 2016 (has links)
Submitted by Marco Antonio Oliveira da Silva (maosilva@ipen.br) on 2016-08-26T12:33:02Z No. of bitstreams: 0 / Made available in DSpace on 2016-08-26T12:33:02Z (GMT). No. of bitstreams: 0 / Este trabalho tem como objetivo estudar as modificações introduzidas, ao longo de sucessivas versões, nos modelos empíricos do programa computacional FRAPCON utilizado para a simulação do comportamento sob irradiação de varetas combustíveis de Reatores a Água Leve Pressurizada (Pressurized Water Reactor - PWR) em regime de estado estacionário e sob condições de alta queima. No estudo, foram analisados os modelos empíricos utilizados pelo FRAPCON e que são apresentados em sua documentação oficial. Um estudo bibliográfico foi conduzido sobre os efeitos da alta queima em combustíveis nucleares visando melhorar o entendimento dos modelos utilizados pelo FRAPCON nestas condições. Foram feitas simulações do comportamento sob irradiação de uma vareta combustível típica de um reator PWR utilizando as versões 3.3, 3.4 e 3.5 do FRAPCON. Os resultados apresentados pelas diferentes versões do programa foram comparados entre si de forma a verificar as consequências das mudanças de modelo nos parâmetros de saída do programa. Foi possível observar que as modificações introduzidas trouxeram diferenças significativas nos resultados de parâmetros térmicos e mecânicos da vareta combustível, principalmente quando se evoluiu da versão FRAPCON-3.3 para a versão FRAPCON-3.5. Nessa ultima versão, obteve-se menores temperaturas na vareta combustível, menores tensões e deformações no revestimento, menor espessura da camada de oxido formada no revestimento a altas queimas na vareta combustível. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
69

Análise do comportamento sob irradiação do combustível nuclear a altas queimas com os programas computacionais FRAPCON e FRAPTRAN / Analysis of the behavior under irradiation of high burnup nuclear fuels with the computer programs FRAPCON and FRAPTRAN

Regis Reis 19 August 2014 (has links)
O objetivo deste trabalho é verificar a validade e a acurácia dos resultados fornecidos pelos programas computacionais FRAPCON-3.4a e FRAPTRAN-1.4, utilizados no processo de simulação do comportamento de varetas combustíveis de reatores a água leve pressurizada PWR (Pressurized Water Reactor), sob situações operacionais de regimes permanente e transiente, em condições de alta queima (high burnup). Para realizar a verificação, foi utilizada a base de dados FUMEX-III, que fornece dados relativos a experimentos realizados com diversos tipos de combustíveis nucleares, submetidos a diversas condições operacionais. Através dos resultados obtidos nas simulações computacionais com os programas FRAPCON-3.4a e FRAPTRAN-1.4 e da sua comparação com os dados experimentais da base FUMEX-III, foi possível constatar que os programas empregados possuem um boa capacidade de predizer o comportamento operacional de varetas combustíveis de PWR em regime permanente a altas queimas e sob condição de transiente inicializado por reatividade (Reactivity Initiated Accident RIA). / The objective of this work is to verify the validity and accuracy of the results provided by the computer programs FRAPCON-3.4a and FRAPTRAN-1.4, used in the simulation process of the irradiation behavior of Pressurized Water Reactors (PWR) fuel rods in steady-state and transient operational conditions at high burnup. To perform the verification, the database FUMEX-III was used to provide data on experiments with different nuclear fuel types, under various operating conditions. Through the comparison of the computational simulation results of the programs FRAPCON-3.4a e FRAPTRAN-1.4 with the experimental data of the database FUMEX III, it was found that the computer programs used have good ability to predict the operational behavior of PWR fuel rods in high burnup steady-state conditions and under Reactivity Initiated Accident (RIA).
70

LOCAL IRRADIATION CONDITION INFERENCE ANALYZING SPENT FUEL ISOTOPICS

Tarikul Islam (17131093) 12 October 2023 (has links)
<p dir="ltr">The estimation of local irradiation conditions is a complex and crucial task with significant implications for reactor safety, operation, and spent nuclear fuel management. This study aims to investigate the feasibility of using measurements of a limited number of nuclides taken at the time of discharge to infer local irradiation conditions. Specifically, the focus is on determining the local operating power, void fraction, and burnup. These factors are required to calculate the isotopic composition of discharged reactor assemblies. Existing methods often struggle with substantial uncertainties when estimating these local conditions, leading to inaccuracies in isotopic calculations. Therefore, markedly different, this research aims to establish a relationship between local conditions and isotopic measurements, benefiting from the low uncertainty associated with experimental isotopic measurements. To achieve this goal, a two-step approach is employed. First, a mathematical inference procedure is developed to correlate the isotopic composition of discharged fuel with the local irradiation conditions. Second, given a certain prediction accuracy, efforts are made to minimize the number of isotopic measurements required at the time of discharge. To do so, this work develops an inference algorithm employing a simplified depletion model of a single pin in a BWR assembly using SCALE Polaris module. Polaris module generates the virtual measurement of 29 nuclides including actinides and fission products with assumed power and void fraction histories provided to SCALE Polaris as inputs. Employing these virtual measurements, a similarity measure metric is employed to minimize the number of nuclides to estimate irradiation conditions, and the inference method used to estimate the irradiation conditions is the ordinary least squares method.</p>

Page generated in 0.3648 seconds