• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Realimentação de relevância em buscas de imagem usando programação Genética

Silva, Gregory Oliveira da 09 May 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-24T15:38:04Z No. of bitstreams: 1 Dissertação - Gregory O. Silva.pdf: 1124819 bytes, checksum: 1da0563076b91fe78ae0ec2096e8fcf5 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-24T15:39:50Z (GMT) No. of bitstreams: 1 Dissertação - Gregory O. Silva.pdf: 1124819 bytes, checksum: 1da0563076b91fe78ae0ec2096e8fcf5 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-24T15:40:29Z (GMT) No. of bitstreams: 1 Dissertação - Gregory O. Silva.pdf: 1124819 bytes, checksum: 1da0563076b91fe78ae0ec2096e8fcf5 (MD5) / Made available in DSpace on 2016-11-24T15:40:29Z (GMT). No. of bitstreams: 1 Dissertação - Gregory O. Silva.pdf: 1124819 bytes, checksum: 1da0563076b91fe78ae0ec2096e8fcf5 (MD5) Previous issue date: 2016-05-09 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Fashion products are difficult items to be annotated and described by text, making it necessary to use images to perform searches on web sites of e-commerce. Such products hold great visual appeal, in other words the presentation of images relating to them are factors that directly influence the buying decision of a customer. These facts justify the study of the use of CBIR (Content Based Image Retrieval) in this context, an area already well studied in the scientific community, but that still has several shortcomings, the main one being the problem of Semantic Gap . The use of features extracted from the image by an algorithm is still not effective enough in associate it with its meaning, which is reflected in the results of a search, affecting the customer satisfaction with the store. This study seeks to address the problem of Semantic Gap through Genetic Programming and Relevance Feedback, motivated by the good results reported in the literature concerning the use of such techniques. Experiments were performed with an image base extracted from web sites e-commerce, and we used two subsets of images as queries, where one has images with a uniform background (as do the images of the data set), and the other has images with noisy backgrouns (photography in general). We compared the use of Relevance Feedback for both subsets, and for each subset we compared the use of ranking functions learned with and without using feedback. As the result, the best cenery for both subsets is to use the ranking function learned without usinf RF. Using RF on the learning process of GP makes the individuals dependent of the feedback, worsening the answers of searches before the first interaction with the user, and making the learned function unable to capture the semantic of the original query. / Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se necessário o uso de imagens para a realização de buscas em web sites de e-commerce. Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes aos mesmos são fatores que influenciam diretamente a decisão de compra de um cliente. Estes fatos justificam o estudo do uso de CBIR (Content Based Image Retrieval) neste contexto, uma área já bastante estudada na comunidade científica, mas que ainda possui diversas lacunas, sendo a principal o problema do Gap Semântico. O uso de características extraídas da imagem por um algoritmo ainda não é eficaz o suficiente em associá-la ao seu significado, o que se reflete nos resultados de uma busca, afetando a satisfação do cliente com a loja. Este trabalho busca abordar o problema do Gap Semântico através do uso de Programação Genética e Relevance Feedback, motivado pelos bons resultados relatados na literatura referentes ao uso de tais técnicas. Foram realizados experimentos com uma base de imagens extraídas de web sites de e-commerce, e foram usados dois subconjuntos de imagens como consultas, sendo um formado por imagens com plano de fundo uniforme (semelhantes às presentes na base), e outro por imagens com ruído no fundo (fotografias em geral). Foram comparados o uso de Relevance Feedback para os dois subconjuntos de consultas, e para cada subconjunto foram comparados o uso de funções de ranking aprendidas com e sem o uso de feedback. Como resultado temos que o melhor cenário para ambos os subconjuntos é o uso da função de ranking aprendida sem RF. O uso de RF durante a aprendizagem torna os indivíduos dependentes do feedback, piorando as respostas em buscas antes da primeira interação de RF, e fazendo com que a função aprendida não seja capaz de captar a semântica da consulta original.

Page generated in 0.0568 seconds