• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estrat?gias de busca reativa utilizando aprendizagem por refor?o e algoritmos de busca local

Santos, Jo?o Paulo Queiroz dos 12 September 2014 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2015-11-27T13:12:56Z No. of bitstreams: 1 JoaoPauloQueirozDosSantos_TESE.pdf: 2943111 bytes, checksum: d4f55a9718f28707aa96893d2b66b4e5 (MD5) / Approved for entry into archive by Elisangela Moura (lilaalves@gmail.com) on 2015-11-27T14:58:26Z (GMT) No. of bitstreams: 1 JoaoPauloQueirozDosSantos_TESE.pdf: 2943111 bytes, checksum: d4f55a9718f28707aa96893d2b66b4e5 (MD5) / Made available in DSpace on 2015-11-27T14:58:26Z (GMT). No. of bitstreams: 1 JoaoPauloQueirozDosSantos_TESE.pdf: 2943111 bytes, checksum: d4f55a9718f28707aa96893d2b66b4e5 (MD5) Previous issue date: 2014-09-12 / T?cnicas de otimiza??o conhecidas como as metaheur?sticas tem conseguido resolversatisfatoriamente problemas conhecidos, mas desenvolvimento das metaheur?sticas ?caracterizado por escolha de par?metros para sua execu??o, na qual a op??o apropriadadestes par?metros (valores). Onde o ajuste de par?metro ? essencial testa-se os par?metrosat? que resultados vi?veis sejam obtidos, normalmente feita pelo desenvolvedor que estaimplementando a metaheuristica. A qualidade dos resultados de uma inst?ncia1 de testen?o ser? transferida para outras inst?ncias a serem testadas e seu feedback pode requererum processo lento de ?tentativa e erro? onde o algoritmo t?m que ser ajustado para umaaplica??o especifica. Diante deste contexto das metaheur?sticas surgiu a Busca Reativaque defende a integra??o entre o aprendizado de m?quina dentro de buscas heur?sticaspara solucionar problemas de otimiza??o complexos. A partir da integra??o que a BuscaReativa prop?e entre o aprendizado de m?quina e as metaheur?sticas, surgiu a ideia dese colocar a Aprendizagem por Refor?o mais especificamente o algoritmo Q-learning deforma reativa, para selecionar qual busca local ? a mais indicada em determinado instanteda busca, para suceder uma outra busca local que n?o pode mais melhorar a solu??ocorrente na metaheur?stica VNS. Assim, neste trabalho propomos uma implementa??o reativa,utilizando aprendizado por refor?o para o auto-tuning do algoritmo implementado,aplicado ao problema do caixeiro viajante sim?trico e ao problema escalonamento sondaspara manuten??o de po?os.

Page generated in 0.0566 seconds