• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Statistical and wavelet analysis of density and magnetic susceptibility data from the Bushveld Complex, South Africa

Sepato, Obone January 2015 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2015 / The Bushveld Complex (BC) is the largest known layered intrusion. This suite of rock crop out in northern South Africa to form the Western, Eastern and Northern Limbs. Most research carried out focuses on the mineralized horizons in the Rustenburg Layered Suite (RLS) of the BC. This study presents a large database of wireline geophysical logs across a substantive part of the stratigraphy of the RLS. These consist of density and magnetic susceptibility datasets sampled at 1 cm. The major lithologies of the RLS intersected in the boreholes presented are gabbro, gabbronorite, norite and anorthosite whose density histograms reveal that they are predominantly normally distributed, with density averages of 2.86-2.91 g/cm3. The lithologies consist of mainly two minerals, pyroxene and plagioclase. In general, the average density increases with an increase in pyroxene. The distribution of the magnetic susceptibility for these lithologies has a large variation from SI to 13.2 SI, which is typical of layered intrusions. Susceptibility distributions are also multi-modal, asymmetric and not normally distributed, which makes the average magnetic susceptibilities less representative of the lithologies. Cross-correlation plots between density and magnetic susceptibility for several boreholes show that the above-mentioned lithologies form clusters (circular to elliptical), which typically overlap. This has been further investigated using k-means classification, to automatically detect these clusters in the cross-correlation plots and to compare these with those created by lithologies. The comparison shows some degree of correlation, implying that physical properties can be used to identify lithologies. This is particularly true for the Eastern Limb. However the classification has not been effective in all of the boreholes and often becomes complicated and an inaccurate representation of lithology log. This occurs in boreholes in which there is an overlap in the physical properties of the abovementioned lithologies. Analysis on the density and magnetic susceptibility data has also been carried out using wavelet analysis at individual locations across the BC. This has revealed multi-scale cyclicity in all of the boreholes studied, which is attributed to subtle layering created by variations in modal proportions between plagioclase and pyroxene. In addition to this, since layering is generally ubiquitous across layered intrusions, this cyclicity can be assumed to be present across the entire BC. This technique may become increasingly important should the cyclicity in physical property data correlate with reversals in fractionation trends since this may suggest zones of magma addition, whose thickness or III volumes can be quantified using wavelet analysis. This could be an important contribution since the current perspective on magma addition in the RLS is that four major additions have formed this 8 km thick suite of rocks, as opposed to smaller periodic influxes of magma. Wavelet-based semblance analysis has been used to compare the wavelengths at which the cyclicity occurs across boreholes. A comparison of wavelengths of this cyclicity shows that boreholes in the northern Western Limb show positive correlation in the density data at wavelengths >160 m and 20-60 m, while those further south show correlations at wavelengths of 120-200 m and 60-80 m. Boreholes of the Eastern Limb show positive correlation in the density and magnetic susceptibility data at wavelengths of 10-20 m, 20-30 m and 5m. These positive correlations across boreholes in density and magnetic susceptibility respectively, may imply that cyclicity may be produced by a chamber-wide process for several kilometres of the BC.
12

Phase relations and Pt solubility in sulphide melt in the FE-NI-CU-S system at 1 ATM : implications for evulution of sulphide magma in the Merensky reef, Bushveld Complex, South Africa

Theron, Luhann Marlon 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: It is widely accepted that sulphide is the carrier and concentrator of PGEs during magmatic mineralization episodes in the Merensky Reef (MR). PGE concentration peaks and sulphide volume percent peaks are very closely correlated. Koegelenberg, (2011), showed in an experimental investigation that sulphide movement through a cumulate silicate and cumulate oxide pile behave in such a way that sulphide melt gets trapped in chromitite layers. When looking at the compositional distribution of sulphide within the MR it is noted that not only does the sulphide volume percent varies with MR stratigraphy but also the sulphide composition. Sulphide composition is more Cu-rich in the chromitite layers and more Fe and Ni dominated in the hanging wall to the chromitite layers. Until now the more Cu-rich assemblage of the chromitite layers are accepted to be of a sulphide melt composition compared to the Fe and Ni dominated Monosulphide Solid Solution or MSS composition in the hanging wall. In this study we used an experimental approach with a sulphide starting composition thought to exist as the parental sulphide composition of the MR to investigate the phase relations with changing temperature. It is found that the sulphide composition in the chromitite layers represent a sulphide melt composition at 1000 ± 50ºC. At 1000ºC, 50% of the sulphide system would exist as a melt. This Cu-rich melt would have segregated from the MSS and be trapped in the chromitite layer. Also at 1000ºC the partitioning of the Pt would have induced a secondary enrichment step of the Pt concentration in melt through the partitioning of Pt between a sulphide melt and a sulphide solid phase. The experimental evidence in this study points towards a possible source for the parental sulphide magma to the MR, which could have been a slightly Cu enriched mantle sulphide composition. Also, the secondary enrichment of Pt through sulphide melt fractionation at 1000ºC plays an important role in the shaping of the ore body. / AFRIKAANSE OPSOMMING: Dit word wydliks aanvaar dat die sulfied fraksie van die Merensky Rif (MR) die draer en die konsentrasie agent is vir Platinum Groep Elemente (PGE`s) gedurende mineralisasie episodes. PGE konsentrasie en sulfied volume persentasie is op `n hoogtepunt by gelyke stratigrafiese posisies in the MR. Koegelenberg, (2011), het deur middel van eksperimente bewys dat `n sulfied smelt deur `n voorafbestaande kumulaat laag kan beweeg en dat veranderende fisiese eienskappe tussen sulfied smelt en silikaat kristal en sulfied smelt en chromiet kristal, die sulfied smelt sal opsuig en verhoud om verder deur te suipel. Dit is egter oplettend dat nie net die sulfied volume persentasie varieer as `n funksie van die MR stratigrafie nie, maar ook die sulfied samestelling. Die meer Cu-ryke sulfied samestelling in die chromiet lae word aanvaar as `n sulfied smelt fraksie en die meer Fe en Ni dominerende sulfied samestelling in die oorhangende wandgesteentes verteenwoordig die Monosulfied Vaste Oplossing (MVO) soliede fase. In hierdie studie maak ons gebruik van eksperimentele petrologie tesame met `n begin samestelling verteenwoordigend van die oorsprong sulfied samestelling van die MR, om die fase verwantskappe van hierdie spesifieke samestelling te ondersoek. Dit word gevind dat die fraksionering tydens die vorming van die MR plaasgevind het by ongeveer 1000 ±50 C. By hierdie temperatuur is 50% van die sisteem teenwoordig as `n smelt fase. Hierdie Cu-verykte smelt was daartoe instaat om deur die silikaat laag te suipel, geskei te raak van die Fe en Ni dominerende MVO en vasgevang te word in die chromiet lae. Hierdie fraksionering van die sulfied smelt het ook `n sekondêre effek gehad op die verspreiding van Pt tussen sulfied smelt en sulfied soliede fases. Hierdie eksperimentele bewyse dui eerstens op die moontlikheid van `n sulfied smelt in die MR wat sy oorsprong vanuit `n effense Cu-verykte mantel bron kan hê, en tweedens op die belangrikheid van `n sekondêre proses vir Pt re-distribusie tydens die vorming van die MR.

Page generated in 0.0377 seconds