• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Functional Characterization of Leukocyte-type Core 2 {beta}1,6-N-acetylglucosaminyltransferase

Pak, John 18 January 2012 (has links)
Leukocyte type core 2 {beta}1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Gal{beta}1,3[GlcNAc{beta}1,6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Gal{beta}1,3GalNAc-O-Ser/Thr), respectively. The primary objective of the work described in this thesis is to shed light on the structure, catalytic mechanism and substrate specificity of C2GnT-L. Since glycosyltransferases are membrane bound glycoproteins that possess disulphide bonds, the first challenge was to produce sufficient quantities of C2GnT-L for biochemical and structural characterization. To this end, C2GnT-L and various active site mutants were expressed and purified from stably transformed mammalian cell lines. The x-ray crystal structure of wild-type C2GnT-L was solved, in both its apo and acceptor substrate complexed forms. The structures, along with revealing the structural basis for acceptor substrate specificity, showed that C2GnT-L belongs to the GT-A glycosyltransferase fold type. This was a surprising result given that, to this day, C2GnT-L is the only GT-A glycosyltransferase that does not possess a DXD motif and does not require a divalent metal ion for catalysis. The mechanism of the metal ion-independent C2GnT-L activity, within the context of the metal ion-dependent GT-A fold, was probed further using site directed mutagenesis in conjuncition with x-ray crystallography, enzyme assays, and frontal affinity chromatography. It was found that positively charged side chains in C2GnT-L functionally replace the divalent metal ion found in other GT-A glycosyltransferases, providing evidence for a convergence of metal ion-independent activity between GT-A and GT-B glycosyltransferase fold types.
2

Structural and Functional Characterization of Leukocyte-type Core 2 {beta}1,6-N-acetylglucosaminyltransferase

Pak, John 18 January 2012 (has links)
Leukocyte type core 2 {beta}1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Gal{beta}1,3[GlcNAc{beta}1,6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Gal{beta}1,3GalNAc-O-Ser/Thr), respectively. The primary objective of the work described in this thesis is to shed light on the structure, catalytic mechanism and substrate specificity of C2GnT-L. Since glycosyltransferases are membrane bound glycoproteins that possess disulphide bonds, the first challenge was to produce sufficient quantities of C2GnT-L for biochemical and structural characterization. To this end, C2GnT-L and various active site mutants were expressed and purified from stably transformed mammalian cell lines. The x-ray crystal structure of wild-type C2GnT-L was solved, in both its apo and acceptor substrate complexed forms. The structures, along with revealing the structural basis for acceptor substrate specificity, showed that C2GnT-L belongs to the GT-A glycosyltransferase fold type. This was a surprising result given that, to this day, C2GnT-L is the only GT-A glycosyltransferase that does not possess a DXD motif and does not require a divalent metal ion for catalysis. The mechanism of the metal ion-independent C2GnT-L activity, within the context of the metal ion-dependent GT-A fold, was probed further using site directed mutagenesis in conjuncition with x-ray crystallography, enzyme assays, and frontal affinity chromatography. It was found that positively charged side chains in C2GnT-L functionally replace the divalent metal ion found in other GT-A glycosyltransferases, providing evidence for a convergence of metal ion-independent activity between GT-A and GT-B glycosyltransferase fold types.

Page generated in 0.0154 seconds