1 |
Investigation of firing properties in CA1 hippocampal pyramidal neurons in a mouse model of Fragile X syndromeDickson, Andrea Haessly 26 April 2013 (has links)
Fragile X Syndrome is the most common form of heritable cognitive disability. It is caused by a genetic mutation that leads to a lack of protein from the FMR1 gene. This protein (FMRP) is used to regulate the translation of many other proteins, thereby leading to a wide range of effects. Because the origin of this disease is based on the lack of a single protein, an animal model with construct validity can be used to investigate the potential effects leading to the symptoms of the disease.
Many studies have investigated the synaptic plasticity differences of CA1 pyramidal neurons between a mouse model of fragile X syndrome (KO) and a wild type mouse (WT). This study investigates the differences in firing properties of a CA1 pyramidal neuron between the KO and WT. Specifically, contributions of two ion channels are investigated: the Ca2+ and voltage activated potassium channel (BK) and the potassium channel (M) inhibited by the muscarinic acetylcholine receptor.
This study finds some differences that warrant further investigation, including differences in spike timing, spike width and the initial rate of rise of an action potential. However, several areas of investigation yield subtle or confounding results, which may indicate that the CA1 pyramidal neurons affected by the lack of FMRP may make up more than one population. / text
|
2 |
Theta-frequency oscillatory synchrony in the dendrites of hippocampal CA1 pyramdial neuronsVaidya, Sachin Prashant 14 July 2014 (has links)
A CA1 pyramidal neuron in the rodent hippocampus integrates inputs from as many as 30,000 synapses distributed over hundreds of microns, making synaptic integration an intricate spatio-temporal computation. Crucial to this computation, is the timing of synaptic inputs at the axo-somatic integration site. Consequently, it would be beneficial if co-incident proximal and distal inputs arrive simultaneously at the axo-somatic integration site. This, however, is a challenge considering that spatially dispersed inputs have to propagate varying distances, leading to location-dependent temporal differences at the soma. Here we show that CA1 pyramidal neurons have an intrinsic biophysical mechanism in the form of a gradient of HCN channels that actively counteracts location-dependent temporal differences of dendritic inputs at the soma. HCN channels, due to their slow kinetics and unusual gating properties, impart an inductive reactance to the neuronal membrane properties. Using multi-site whole cell recordings, we show that this gradient of inductive reactance actively compensates for the location-dependent capacitive delay of dendritic inputs. This leads to a response synchrony of spatially dispersed inputs at the soma. This response synchrony is optimum for oscillatory signals in the theta frequency range (4-12 Hz). Using computational modeling we show that the characteristic sigmoidal distribution of HCN channels in CA1 neurons is crucial for the efficient and exclusive transfer of these synchronous theta frequencies from dendrite to the soma. To understand the significance of this oscillatory synchrony during synaptic integration, we used the dynamic clamp technique to simulate different temporal patterns of synaptic input in the dendrites of CA1 neurons. Our results reveal that this oscillatory synchrony is best harnessed by theta and gamma (40-140 Hz) frequency synaptic input patterns in CA1 neurons. Gamma and theta oscillations are associated with synchronizing activity across space in the hippocampal network. Our results thus identify a novel mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors. / text
|
3 |
The Effects of Repetition and Sequence Length on Hippocampal Memory Trace ReactivationSutherland, Gary Ralph January 2008 (has links)
Patterns of hippocampal ensemble activity that occur during a spatial experience are reactivated during subsequent rest periods and slow wave sleep. Connections between active cells are thought to be strengthened, via long term potentiation (LTP), by repeated co-activation during experience, which suggests that the level of memory trace reactivation would increase proportionately with repetition. Alternatively, plasticity associated with memory formation, such as LTP-dependent place field expansion and the induction of activity-dependent immediate early gene, ARC, saturates after only a few laps, indicating that reactivation would plateau after a few repetitions. The length of the repeated sequence may also affect reactivation, since activation of a very short sequence can be repeated more frequently than a long sequence in a given time period. We studied how memory trace reactivation was affected by repetition and the length of the repeated sequence by observing the reactivated patterns of cell-pair correlations after a rat ran laps around a long circular track versus running more laps around a short track. On the shorter track, fewer cells had place fields, but they covered more of the track, resulting in generally stronger correlations among active cells. In addition, neuronal activity was recorded from dorsal and mid-ventral CA1. In mid-ventral CA1, there were fewer place fields in the environment but they were larger, with generally stronger correlations among active cells. The comparison between dorsal and mid-ventral regions is thus analogous to the comparison between the sequence of place fields on a long versus short track, respectively. Although there were more cells active in the dorsal region, but more potent correlations in the middle region, no differences in memory trace reactivation were found with respect to repetitions, track length or hippocampal region. This suggests that although spatial scaling increased along the dorsoventral axis of the hippocampus, reactivation is balanced, and possibly coherent across the hippocampal axis and it is relatively independent of sequence length or number of repetitions, at least when that number exceeds about 20.
|
4 |
Cytoarchitectonically-Driven MRI Atlas of the Hippocampus and the Behavioral Impact of Neural Recording Devices: Addressing Methodological Concerns for Studies of Age-Related Change in Hippocampal SubfieldsKyle, Colin T., Kyle, Colin T. January 2017 (has links)
The hippocampal formation forms a circuit of cytoarchitectonically distinct subregions, and substantial evidence suggests each region makes unique computational contributions that support spatial and episodic memory. With aging, hippocampal subfields undergo unique neurobiological alterations, and primate in vivo work making use of both MR imaging and chronic neural recording devices has important links to changes seen in nonprimate animal models with aging (Thome et al., 2016; Yassa et al., 2011a; Yassa et al., 2010). While MRI offers a noninvasive way to study the hippocampal subfields, identifying hippocampal subregions without using post mortem histology is a challenge. When different research labs attempted to identify the hippocampal subregions using a single subject’s MRI, researchers showed significant disagreement in where to label different subregions (Yushkevich et al., 2015a). Alternatively, chronic neural recording devices offer an invasive solution to studying hippocampal subfields. However, it is currently not clear whether the mechanical trauma and foreign body response produced by neural recording devices disrupts neural circuits critical for behavior. Here, my colleagues and I address these issues with in vivo primate research. Chapter I provides a general introduction to the hippocampal circuits and changes observed in aging. Chapter II presents novel methods for construction of a histology-driven MRI atlas of nonhuman primate hippocampus that addresses accurate identification of hippocampal subfields in MR images. Chapter III presents empirical work that examines whether chronic neural recording devices targeted at the hippocampus affect recognition memory. Finally, Chapter IV provides a general discussion of both works in the context of the broader literature.
|
5 |
Propriétés morpho-fonctionnelles des neurones GABAergiques générés tôt dans la région CA1 de l'hippocampe adulte et en développement / Morpho-functional properties of early-born GABAergic neurons in developing and adult CA1 hippocampal circuitsGouny, Claire 31 October 2018 (has links)
Les neurones GABAergiques sont une composante majeure des réseaux neuronaux corticaux. Au cours du développement, les neurones GABAergiques pionniers générés aux stades les plus précoces de l’embryogénèse forment une sous-population de neurones « hubs ». Cependant, leurs propriétés et leurs fonctions à l'âge adulte restent inconnus. En combinant différentes techniques, nous montrons que ces neurones pionniers ont également une fonction « hub » dans la région CA1 en développement in vitro et qu’ils maintiennent une forte connectivité fonctionnelle pendant les périodes de veille calme chez la souris adulte in vivo. Ces neurones, peu actifs de façon spontanée chez l’adulte, sont préférentiellement recrutés pendant les activités calciques synchrones souvent associées aux oscillations de type « SWRs ». Ceci est compatible avec leur faible excitabilité intrinsèque, révélée par des enregistrements en courant-imposé. L’étude des connexions synaptiques afférentes des neurones pionniers de CA1 adulte, par optogénétique, révèle un schéma de connectivité remarquable avec des entrées synaptiques GABAergiques issues du septum et la quasi-absence d’entrées thalamiques. Localement, ces neurones reçoivent moins de courants postsynaptiques GABAergiques, témoignant d’une intégration différentielle dans le réseau GABAergique inhibiteur. Enfin, nous montrons qu’une majorité significative de ces neurones pionniers appartiennent à la famille des neurones à projection longue distance. En conclusion, nous montrons que les neurones GABAergiques pionniers sont prédéterminés à occuper une place remarquable dans l’organisation fonctionnelle et structurale de l’hippocampe tout au long de leur vie. / The remarkable diversity of cortical GABAergic neurons is rooted, at least in part, in their embryonic origins. Adding to the spatial control of interneuron specification is a temporal schedule that has significant impact on their fate. In the CA3 region of the hippocampus, GABAergic cells born the earliest (ebGABA) form a sparse subpopulation acting as ‘hubs’ during development and surviving until adulthood. However, their properties and function in adulthood remain elusive. Using a combination of techniques, we demonstrate that ebGABA neurons also operate as “hubs” in the developing CA1 region in vitro and that they seem to maintain such remarkable functional connectivity into adulthood as observed during quiet rest in vivo. EbGABA display a lower spontaneous activity rate, as expected from their lower intrinsic excitability and are preferentially recruited during the synchronous calcium events previously shown to be associated with SWRs. EbGABA also display a remarkable synaptic connectivity scheme as they receive long-range GABAergic septal inputs but are almost excluded from thalamic afferents. Locally, they receive fewer spontaneous inhibitory postsynaptic currents, indicating a particular integration into local GABAergic circuits. Moreover, using combinatorial immunohistochemistry, we have shown that a majority of these ebGABA neurons are long-range projection GABAergic neurons. We conclude that, ebGABA cells are predetermined to become exceptional nodes in the functional and structural organization of the hippocampus, throughout their lifetime.
|
6 |
Plasticités hebbienne et homéostatique de l'excitabilité intrinsèque des neurones de la région CA1 de l'hippocampe=hebbian and homeostatic plasticity of intrinsic excitability in hippocampal CA1 neurons / Hebbian and Homeostatic plasticity of intrinsic excitability in hippocampal CA1 neuronsGasselin, Célia 24 October 2013 (has links)
Pendant des décennies, la plasticité synaptique a été considérée comme le substrat principal de la plasticité fonctionnelle cérébrale. Récemment, plusieurs études expérimentales indiquent que des régulations à long terme de l’excitabilité intrinsèque participent à la plasticité dépendante de l’activité. En effet, la modulation des canaux ioniques dépendants du potentiel, lesquels régulent fortement l’excitabilité intrinsèque et l’intégration des entrées synaptiques, a été démontrée essentielle dans les processus d’apprentissage. Cependant, la régulation, dépendante de l’activité, du courant ionique activé par l’hyperpolarisation (Ih) et ses conséquences sur l’induction de futures plasticités reste à éclaircir, tout comme la présence d’une régulation de conductances dépendantes du potentiel dans les neurones inhibiteurs. Dans la première partie de ma thèse, nous caractérisons les mécanismes d’induction et d’expression de la plasticité à long terme de l’excitabilité (LTP-IE) dans les interneurons en panier de la région CA1 exprimant la parvalbumine. Dans une seconde partie, le rôle de Ih dans la régulation homéostatique de l’excitabilité neuronale induite par des manipulations de l’activité neuronale dans sa globalité a été étudié. Dans la troisième étude, nous montrons que la magnitude de la Dépression à Long Terme (LTD) détermine le sens de la régulation de Ih dans les neurones pyramidaux de CA1. En conclusion, cette thèse montre qu’à la fois dans les neurones excitateurs et inhibiteurs, les régulations des conductances dépendantes du potentiel aident à maintenir une relative stabilité dans l’activité du réseau. / Synaptic plasticity has been considered for decades as the main substrate of functional plasticity in the brain. Recently, experimental evidences suggest that long-lasting regulation of intrinsic neuronal excitability may also account for activity-dependent plasticity. Indeed, voltage-dependent ionic channels strongly regulate intrinsic excitability and inputs integration and their regulation was found to be essential in learning process. However, activity-dependent regulation of the hyperpolarization-activated ionic current (Ih) and its consequences for future plasticity remain unclear, so as the presence of any voltage-dependent conductances regulation in inhibitory neurons. In the first part of this thesis, we report the characterization of the induction and expression mechanisms of Long-Term Potentiation of Intrinsic Excitability (LTP-IE) in CA1 parvalbumin-positive basket interneurons. In a second part, the role of Ih in the homeostatic regulation of intrinsic neuronal excitability induced by global manipulations of neuronal activity was reported. In the third experimental study, we showed that the magnitude of Long-term Depression (LTD) determines the sign of Ih regulation in CA1 pyramidal neurons. In conclusion, this thesis shows that in both excitatory and inhibitory neurons, activity-dependent regulations of voltage-dependent conductances help to maintain a relative stability in the network activity.
|
7 |
Constraining the function of CA1 in associative memory models of the hippocampusLongden, Kit January 2005 (has links)
CA1 is the main source of afferents from the hippocampus, but the function of CA1 and its perforant path (PP) input remains unclear. In this thesis, Marr’s model of the hippocampus is used to investigate previously hypothesized functions, and also to investigate some of Marr’s unexplored theoretical ideas. The last part of the thesis explains the excitatory responses to PP activity in vivo, despite inhibitory responses in vitro. Quantitative support for the idea of CA1 as a relay of information from CA3 to the neocortex and subiculum is provided by constraining Marr’s model to experimental data. Using the same approach, the much smaller capacity of the PP input by comparison implies it is not a one-shot learning network. In turn, it is argued that the entorhinal-CA1 connections cannot operate as a short-term memory network through reverberating activity. The PP input to CA1 has been hypothesized to control the activity of CA1 pyramidal cells. Marr suggested an algorithm for self-organising the output activity during pattern storage. Analytic calculations show a greater capacity for self-organised patterns than random patterns for low connectivities and high loads, confirmed in simulations over a broader parameter range. This superior performance is maintained in the absence of complex thresholding mechanisms, normally required to maintain performance levels in the sparsely connected networks. These results provide computational motivation for CA3 to establish patterns of CA1 activity without involvement from the PP input. The recent report of CA1 place cell activity with CA3 lesioned (Brun et al., 2002. Science, 296(5576):2243-6) is investigated using an integrate-and-fire neuron model of the entorhinal-CA1 network. CA1 place field activity is learnt, despite a completely inhibitory response to the stimulation of entorhinal afferents. In the model, this is achieved using N-methyl-D-asparate receptors to mediate a significant proportion of the excitatory response. Place field learning occurs over a broad parameter space. It is proposed that differences between similar contexts are slowly learnt in the PP and as a result are amplified in CA1. This would provide improved spatial memory in similar but different contexts.
|
8 |
G-Protein Coupled Receptor Mediated Metaplasticity at the Hippocampal CA1 SynapseSidhu, Bikrampal Singh 23 February 2010 (has links)
Activity of the NMDA receptor is crucial for CA1 plasticity. Functional modification of the receptor is one way to modulate synaptic plasticity and affect hippocampus dependent behaviours. Two GPCRs, the dopamine receptor D1 and the PACAP38 receptor PAC1, have been shown to enhance NMDA activity via Gq and Gs signaling pathways respectively. Enhancement of NMDAR activity by the D1/Gs pathway depends on phosphorylation of the NR2B subunit by Fyn kinase. Conversely, enhancement by the PAC1/Gq pathway depends on phosphorylation of the NR2A subunit by Src kinase.
SKF81297, a D1 agonist, was shown to enhance LTD whereas PACAP38, through the PAC1 pathway, was shown to lower the threshold for LTP. Both effects were blocked by specific antagonists and shown to be dependent on NR2 subunit phosphorylation. Ultimately, physiological metaplasticity at the CA1 synapse may be mediated by the relative activation of many GPCR signaling pathways via modification of the NR2 subunit.
|
9 |
G-Protein Coupled Receptor Mediated Metaplasticity at the Hippocampal CA1 SynapseSidhu, Bikrampal Singh 23 February 2010 (has links)
Activity of the NMDA receptor is crucial for CA1 plasticity. Functional modification of the receptor is one way to modulate synaptic plasticity and affect hippocampus dependent behaviours. Two GPCRs, the dopamine receptor D1 and the PACAP38 receptor PAC1, have been shown to enhance NMDA activity via Gq and Gs signaling pathways respectively. Enhancement of NMDAR activity by the D1/Gs pathway depends on phosphorylation of the NR2B subunit by Fyn kinase. Conversely, enhancement by the PAC1/Gq pathway depends on phosphorylation of the NR2A subunit by Src kinase.
SKF81297, a D1 agonist, was shown to enhance LTD whereas PACAP38, through the PAC1 pathway, was shown to lower the threshold for LTP. Both effects were blocked by specific antagonists and shown to be dependent on NR2 subunit phosphorylation. Ultimately, physiological metaplasticity at the CA1 synapse may be mediated by the relative activation of many GPCR signaling pathways via modification of the NR2 subunit.
|
10 |
Role of Self-generated Odor Cues in Place Cell Representation of Spatial ContextAikath, Devdeep, Aikath, Devdeep January 2012 (has links)
The importance of the hippocampus in the formation and retrieval of episodic
memory has been famously demonstrated in the case of patient H.M. Subsequent studies
conducted in animal models have provided considerable insight into the specific
functions of the individual components of the hippocampus. In the rodent, the pyramidal
neurons of the CA1 and CA3 regions of the hippocampus have typically been associated
with the encoding of visuo-spatial cues and their utilization in navigation. These ‘place
cells’ fire when the animal is in a specific part of its environment (its place field).
However, these cells also encode non-spatial information from other sensory inputs, such
as olfaction and audition. This study was conducted to find out how contextual odor cues
are represented in the firing of CA1 place cells and whether these cues could drive stable
spatial representations.
One group of mice was first extensively familiarized to a cylinder containing both
visual cues and preserved, self-generated odor cues. Then, after assessing place field
stability across a six hour delay, the visual and odor cues were rotated in opposite
directions by ninety degrees (counter-rotated). Another group of mice was familiarized
only to the visual cues that were subsequently rotated. The next day stability and rotation were re-assessed in a novel cylinder. However, the odor cues of the two groups were
switched: the preserved odor cues of the first group were removed, and the odor cues of
the second group were now preserved across the three sessions. In a separate experiment,
a third group of animals was familiarized only to the odor cues. Firstly, we found that
contextual odor cues attenuated rotation with the visual cues, but only following
extensive familiarization. Secondly, the removal of familiar odor cues impaired long-term
stability of place fields. Third and finally, the self-generated odor cues alone were not
sufficient for the generation of stable place fields in a free, open-field exploration
paradigm.
We therefore conclude that although they are not as dominant as discrete visual
cues, highly familiarized odor cues exert a significant effect on the representation of
space of the mouse CA1 place cell, illustrating the role of contextually relevant
information in navigating an ever-changing world.
|
Page generated in 0.0302 seconds