• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MCAD - ECAD integration: constraint modeling and propagation

Chen, Kenway 14 October 2008 (has links)
Mechatronic systems encompass a wide range of disciplines, including mechanical and electrical engineering, and hence the development process for mechatronic system is collaborative in nature. Currently the collaborative development of mechatronic systems is inefficient and error-prone because contemporary design environments do not allow sufficient information flow of design and manufacturing data across different engineering domains. Mechatronic systems need to be designed in an integrated fashion allowing designers from multiple engineering domains to receive updates regarding design modifications throughout the design process. One approach to facilitate integrated design of mechatronic systems is to integrate mechanical with electrical engineering CAD systems. Currently there exist numerous techniques that were developed to support various levels of integration between CAD/CAE systems. Standardized data exchange formats, e.g., STEP and IGES, support information exchange between various different CAD and PDM systems. Multi-Representation Architecture (Peak et al.) supports the integration of geometric information in CAD tools with analysis information in CAE tools. Other integration techniques include the Core Product Model (developed at NIST), Active Semantic Networks (Roller et al.), Constraint Linking Bridge (Kleiner et al.), and others. All these techniques have their areas of focus as well as research gaps that need to be covered. One area that needs research attention is the information exchange between mechanical and electrical domains, which is the focus of this thesis. In this thesis, the information exchange between mechanical and electrical domains is explored from two perspectives: conceptual design perspective, in which constraint relationship between attributes of mechanical and electrical components is identified and classified based on the physical forms, functions, and behavior of the mechatronic system; system realization perspective, in which the identified constraints are modeled for propagation between MCAD and ECAD systems. SysML is used to model the constraints between mechanical and electrical components. By means of an illustrative example (a robot arm), the constraint modeling and propagation developed in my thesis are demonstrated and implemented utilizing a MCAD system (SolidWorks) and an ECAD system (EPLAN Electric P8).

Page generated in 0.1339 seconds