• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Human Activity Recognition and Prediction using RGBD Data

Coen, Paul Dixon 01 August 2019 (has links)
Being able to predict and recognize human activities is an essential element for us to effectively communicate with other humans during our day to day activities. A system that is able to do this has a number of appealing applications, from assistive robotics to health care and preventative medicine. Previous work in supervised video-based human activity prediction and detection fails to capture the richness of spatiotemporal data that these activities generate. Convolutional Long short-term memory (Convolutional LSTM) networks are a useful tool in analyzing this type of data, showing good results in many other areas. This thesis’ focus is on utilizing RGB-D Data to improve human activity prediction and recognition. A modified Convolutional LSTM network is introduced to do so. Experiments are performed on the network and are compared to other models in-use as well as the current state-of-the-art system. We show that our proposed model for human activity prediction and recognition outperforms the current state-of-the-art models in the CAD-120 dataset without giving bounding frames or ground-truths about objects.

Page generated in 0.0247 seconds